Recent findings in animals emphasize that experimental ischemic brain damage can be strikingly reduced by estrogen: however, the neuroprotective mechanisms are not well understood. It was hypothesized that estrogen signaling via cognate estrogen receptors (ERs) within the vasculature is an important aspect of cerebral ischemic protection in the female brain, in part by amplifying intraischemic cerebral blood flow (CBF). In the present study, the hypothesis that chronic treatment with the pure ER antagonist ICI182,780 (ICI) would increase ischemic brain damage by a blood flow-mediated mechanism was investigated. Adult C57B1/6J mice were pretreated with either subcutaneous ICI (100 microg/day) or oil/ethanol vehicle for 1 week before 2 hours of middle cerebral artery occlusion (MCAO) and 22 hours of reperfusion. End-ischemic regional CBF was evaluated in additional cohorts using [14C]iodoantipyrine autoradiography. Infarction volume as measured by cresyl violet histology was greater in the striatum of ICI-treated females (70 +/- 3% of contralateral striatum vs. 40 +/- 12% in vehicle-treated females). Cortical injury was not enhanced relative to control animals (39 +/- 6% of contralateral cortex in ICI group vs. 27 +/- 8% in vehicle-treated group). Physiologic variables and ischemic reduction of the ipsilateral cortical laser-Doppler flow signal were similar between groups. Further, ICI treatment did not alter end-ischemic cortical or striatal CBF. The deleterious effect of ICI was limited to females, as there were no differences in stroke damage or CBF between male treatment groups. These data suggest that estrogen inhibits ischemic brain injury in striatum of the female by receptor-mediated mechanisms that are not linked to preservation of intraischemic CBF.
Background and Purpose-We previously showed that the intravenous administration of the potent 1 -receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine (PPBP) provides neuroprotection against transient focal cerebral ischemia and that the protection depends on treatment duration. We tested the hypothesis that PPBP would provide neuroprotection in a model of transient focal ischemia and 7 days of reperfusion in the rat as assessed with neurobehavioral outcome and infarction volume. Methods-Under the controlled conditions of normoxia, normocarbia, and normothermia, halothane-anesthetized male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion (MCAO) with the intraluminal suture occlusion technique. We used laser Doppler flowmetry to assess MCAO. At 60 minutes after the onset of ischemia, rats were randomly assigned to 1 of 4 treatment groups in a blinded fashion and received a continuous intravenous infusion of control saline or 0.1, 1, or 10 mol ⅐ kg Ϫ1 ⅐ h Ϫ1 PPBP for 24 hours. Neurobehavioral evaluation was performed at baseline (3 to 4 days before MCAO) and at 3 and 7 days of reperfusion. Infarction volume was assessed with triphenyltetrazolium chloride staining on day 7 of reperfusion in all rats. Results-Triphenyltetrazolium chloride-determined infarction volume of ipsilateral cortex was smaller in rats treated with 10 mol ⅐ kg Ϫ1 ⅐ h Ϫ1 PPBP (nϭ15, 68Ϯ12 mm 3 , 18Ϯ3% of contralateral structure, PϽ0.05) (meanϮSEM) compared with corresponding rats treated with saline (nϭ15, 114Ϯ11 mm 3 , 31Ϯ3% of contralateral structure). PPBP did not provide significant neuroprotection in the caudoputamen complex. Although MCAO was associated with several alterations in behavior, the treatment with PPBP had no effect on behavioral outcomes. Conclusions-The
Histological damage and behavioral recovery at 7 days after MCA occlusion was not altered by LTG treatment over the dosage range used in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.