To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population.
We sought to evaluate the muscle metaboreflex in heart failure with reduced ejection fraction (HFrEF) patients, with an emphasis on the interaction between cardiac and peripheral vascular haemodynamics across multiple levels of metaboreceptor activation. In 23 HFrEF patients (63 ± 2 years of age) and 15 healthy control subjects (64 ± 3 years of age), we examined changes in mean arterial pressure, cardiac output, systemic vascular conductance, effective arterial elastance, stroke work and forearm deoxyhaemoglobin concentration during metaboreceptor activation elicited by postexercise circulatory occlusion (PECO) after three levels of static-intermittent handgrip exercise (15, 30 and 45% maximal voluntary contraction). Across workloads, the metaboreflex-induced increase in deoxyhaemoglobin and mean arterial pressure were similar between groups. However, in control subjects, the pressor response was driven by changes (Δ) in cardiac output (Δ495 ± 155, Δ564 ± 156 and Δ666 ± 217 ml min ), whereas this change was accomplished by intensity-dependent reductions in systemic vascular conductance in patients with HFrEF (Δ-4.9 ± 1.5, Δ-9.1 ± 1.9 and Δ-12.7 ± 1.8 ml min mmHg ). This differential response contributed to the exaggerated increases in effective arterial elastance in HFrEF patients compared with control subjects, coupled with a blunted response in stroke work in the HFrEF patients. Together, these findings indicate a preserved role of the metaboreflex-induced pressor response in HFrEF but suggest that this response is governed by changes in the peripheral circulation. The net effect of this response appears to be maladaptive, as it places a substantial haemodynamic load on the left ventricle that may exacerbate left ventricular systolic dysfunction and contribute to exercise intolerance in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.