We investigated the application capabilities of a laser optical sensor, BARDOT (bacterial rapid detection using optical scatter technology) to generate differentiating scatter patterns for the 20 most frequently reported serovars of Salmonella enterica. Initially, the study tested the classification ability of BARDOT by using six Salmonella serovars grown on brain heart infusion, brilliant green, xylose lysine deoxycholate, and xylose lysine tergitol 4 (XLT4) agar plates. Highly accurate discrimination (95.9%) was obtained by using scatter signatures collected from colonies grown on XLT4. Further verification used a total of 36 serovars (the top 20 plus 16) comprising 123 strains with classification precision levels of 88 to 100%. The similarities between the optical phenotypes of strains analyzed by BARDOT were in general agreement with the genotypes analyzed by pulsed-field gel electrophoresis (PFGE). BARDOT was evaluated for the real-time detection and identification of Salmonella colonies grown from inoculated (1.2 × 102 CFU/30 g) peanut butter, chicken breast, and spinach or from naturally contaminated meat. After a sequential enrichment in buffered peptone water and modified Rappaport Vassiliadis broth for 4 h each, followed by growth on XLT4 (~16 h), BARDOT detected S. Typhimurium with 84% accuracy in 24 h, returning results comparable to those of the USDA Food Safety and Inspection Service method, which requires ~72 h. BARDOT also detected Salmonella (90 to 100% accuracy) in the presence of background microbiota from naturally contaminated meat, verified by 16S rRNA sequencing and PFGE. Prolonged residence (28 days) of Salmonella in peanut butter did not affect the bacterial ability to form colonies with consistent optical phenotypes. This study shows BARDOT’s potential for nondestructive and high-throughput detection of Salmonella in food samples.
A recently introduced technique for pathogen recognition called BARDOT (BActeria Rapid Detection using Optical scattering Technology) belongs to the broad class of optical sensors and relies on forward-scatter phenotyping (FSP). The specificity of FSP derives from the morphological information that bacterial material encodes on a coherent optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given a constant environment, are unique to each bacterial species and serovar. The notable similarity between FSP technology and spectroscopies is their reliance on statistical machine learning to perform recognition. Currently used methods utilize traditional supervised techniques which assume completeness of training libraries. However, this restrictive assumption is known to be false for most experimental conditions, resulting in unsatisfactory levels of accuracy, poor specificity, and consequently limited overall performance for biodetection and classification tasks. The presented work demonstrates application of the BARDOT system to classify bacteria belonging to the Salmonella class in a nonexhaustive framework, that is, without full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to learning with a nonexhaustive training dataset to allow for the automated detection of unknown bacterial classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.