ATP depletion and succinate accumulation during ischemia lead to oxidative damage to mammalian organs upon reperfusion. In contrast, freshwater turtles survive weeks of anoxia at low temperatures without suffering from oxidative damage upon reoxygenation, but the mechanisms are unclear. To determine how turtles survive prolonged anoxia, we measured ~80 metabolites in hearts from cold-acclimated (5 °C) turtles exposed to 9 days anoxia and compared the results with those for normoxic turtles (25 °C) and mouse hearts exposed to 30 min of ischemia. In turtles, ATP and ADP decreased to new steady-state levels during fasting and cold-acclimation and further with anoxia, but disappeared within 30 min of ischemia in mouse hearts. High NADH/NAD + ratios were associated with succinate accumulation in both anoxic turtles and ischemic mouse hearts. However, succinate concentrations and succinate/fumarate ratios were lower in turtle than in mouse heart, limiting the driving force for production of reactive oxygen species (ROS) upon reoxygenation in turtles. Furthermore, we show production of ROS from succinate is prevented by re-synthesis of ATP from ADP. Thus, maintenance of an ATP/ADP pool and low succinate accumulation likely protects turtle hearts from anoxia/reoxygenation injury and suggests metabolic interventions as a therapeutic approach to limit ischemia/reperfusion injury in mammals.
Freshwater turtles () are among the very few vertebrates capable of tolerating severe hypoxia and re-oxygenation without suffering from damage to the heart. As myocardial ischemia and reperfusion causes a burst of mitochondrial reactive oxygen species (ROS) in mammals, the question arises as to whether, and if so how, this ROS burst is prevented in the turtle heart. We find that heart mitochondria isolated from turtles acclimated to anoxia produce less ROS than mitochondria from normoxic turtles when consuming succinate. As succinate accumulates in the hypoxic heart and is oxidized when oxygen returns, this suggests an adaptation to lessen ROS production. Specific -nitrosation of complex I can lower ROS in mammals and here we show that turtle complex I activity and ROS production can also be strongly depressed by -nitrosation. We detect endogenous -nitrosated complex I in turtle heart mitochondria, but these levels are unaffected upon anoxia acclimation. Thus, while heart mitochondria from anoxia-acclimated turtles generate less ROS and have a lower aerobic capacity than those from normoxic turtles, this is not due to decreases in complex I activity or expression levels. Interestingly, in-gel activity staining reveals that most complex I of heart mitochondria from normoxic and anoxic turtles forms stable super-complexes with other respiratory enzymes and, in contrast to mammals, these are not disrupted by dodecyl maltoside. Taken together, these results show that although-nitrosation of complex I is a potent mechanism to prevent ROS formation upon re-oxygenation after anoxia , this is not a major cause of the suppression of ROS production by anoxic turtle heart mitochondria.
Mitochondria are important to cellular homeostasis, but can become a dangerous liability when cells recover from hypoxia. Anoxiatolerant freshwater turtles show reduced mitochondrial respiratory capacity and production of reactive oxygen species (ROS) after prolonged anoxia, but the mechanisms are unclear. Here, we investigated whether this mitochondrial suppression originates from downregulation of mitochondrial content or intrinsic activity by comparing heart mitochondria from (1) warm (25°C) normoxic, (2) cold-acclimated (4°C) normoxic and (3) cold-acclimated anoxic turtles. Transmission electron microscopy of heart ventricle revealed that these treatments did not affect mitochondrial volume density and morphology. Furthermore, neither enzyme activity, protein content nor supercomplex distribution of electron transport chain (ETC) enzymes changed significantly. Instead, our data imply that turtles inhibit mitochondrial respiration rate and ROS production by a cumulative effect of slight inhibition of ETC complexes. Together, these results show that maintaining mitochondrial integrity while inhibiting overall enzyme activities are important aspects of anoxia tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.