This work focuses on the identification of five of the most common ferritic morphologies present in welded fusion zones of low carbon steel through images acquired by photomicrographies. With this regards, we discuss the importance of the gray-level co-occurrence matrix to extract the features to be used as the input of the computational intelligence techniques. We use artificial neural networks and support vector machines to identify the proportions of each morphology and present the error identification rate for each technique. The results show that the use of gray-level co-occurrence extraction allows a less intense computational model with statistical validity and the support vector machine as a computational intelligence technique allows smaller variability when compared to the artificial neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.