This paper presents a novel technique based on plasma etching for the mass production of polymer microchip devices. The method consists of the patterning of a photo-resist by a high resolution printer on a foil composed of three layers (5 microm copper/50 microm polyimide/5 microm copper). After this step, both copper layers are chemically etched in order to serve as a contact mask on the polyimide surface so as to produce the desired microstructure pattern. The foil is placed into a reactive plasma chamber in order to etch the exposed polyimide by means of an oxidizing plasma. The method enables holes, lines or larger areas to be etched, thereby generating either microholes, microchannels or electrodes in the plastic material. The copper can then be chemically removed or further patterned to produce conductive pads which are further electroplated with gold. The microchannel is then covered with a polyethylene terephthalate/polyethylene (PET/PE) lamination. The strength of this technology is that access holes for the fluid inlet and outlet, as well as gold coated electrodes can be fabricated without post-processing in a batch process. Demonstration of the application of such microelectrochemical systems is shown here by voltammetric detection inside a 60 nL microchannel, which presents the special feature of linear depletion of the analytes in the direction parallel to the microchannel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.