Common chromosomal fragile sites FRA3B and FRA16D are frequent sites of DNA instability in cancer, but their contribution to cancer cell biology is not yet understood. Genes that span these sites (FHIT and WWOX, respectively) are often perturbed (either increased or decreased) in cancer cells and both are able to suppress tumour growth. While WWOX has some tumour suppressor characteristics, its normal role and functional contribution to cancer has not been fully determined. We find that a significant proportion of Drosophila Wwox interactors identified by proteomics and microarray analyses have roles in aerobic metabolism. Functional relationships between Wwox and either CG6439/isocitrate dehydrogenase (Idh) or Cu–Zn superoxide dismutase (Sod) were confirmed by genetic interactions. In addition, altered levels of Wwox resulted in altered levels of endogenous reactive oxygen species. Wwox (like FHIT) contributes to pathways involving aerobic metabolism and oxidative stress, providing an explanation for the ‘non-classical tumour suppressor’ behaviour of WWOX. Fragile sites, and the genes that span them, are therefore part of a protective response mechanism to oxidative stress and likely contributors to the differences seen in aerobic glycolysis (Warburg effect) in cancer cells.
Chromosomal INstability (CIN), a hallmark of cancer, refers to cells with an increased rate of gain or loss of whole chromosomes or chromosome parts. CIN is linked to the progression of tumors with poor clinical outcomes such as drug resistance. CIN can give tumors the diversity to resist therapy, but it comes at the cost of significant stress to tumor cells. To tolerate this, cancer cells must modify their energy use to provide adaptation against genetic changes as well as to promote their survival and growth. In this study, we have demonstrated that CIN induction causes sensitivity to metabolic stress. We show that mild metabolic disruption that does not affect normal cells, can lead to high levels of oxidative stress and subsequent cell death in CIN cells because they are already managing elevated stress levels. Altered metabolism is a differential characteristic of cancer cells, so our identification of key regulators that can exploit these changes to cause cell death may provide cancer-specific potential drug targets, especially for advanced cancers that exhibit CIN.
The Queensland fruit fly, Bactrocera tryoni (Froggatt), is a polyphagous horticultural pest in Australia that is capable of causing significant damage to more than 100 different host fruits and vegetables. Chemical applications and ecological control strategies, such as the sterile insect technique (SIT), are commonly used to suppress established populations and eradicate invasive outbreaks following migration. The recently published B. tryoni draft genome provides new opportunities to identify candidate genes for targeted genome modification in order to generate advanced genetic strains for management using sterile insect strategies. Here, we demonstrate CRISPR /Casmediated mutagenesis in B. tryoni through generating a series of frame-shift mutations in the ATP-dependent binding cassette transporter, white, causing a classic white-eye phenotype. This work establishes methods for CRISPR/Cas genome editing in tephritids and demonstrates its potential for developing genetic sexing strains which could be used for SIT-based pest control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.