Friedreich’s ataxia is caused by large homozygous, intronic expansions of GAA repeats in the frataxin (FXN) gene, resulting in severe downregulation of its expression. Pathogenic repeats are located in intron one, hence patients express unaffected FXN protein, albeit in low quantities. Although FRDA symptoms typically afflict the nervous system, hypertrophic cardiomyopathy is the predominant cause of death. Our studies were conducted using cardiomyocytes differentiated from induced pluripotent stem cells derived from control individuals, FRDA patients, and isogenic cells corrected by zinc finger nucleases-mediated excision of pathogenic expanded GAA repeats. This correction of the FXN gene removed the primary trigger of the transcription defect, upregulated frataxin expression, reduced pathological lipid accumulation observed in patient cardiomyocytes, and reversed gene expression signatures of FRDA cardiomyocytes. Transcriptome analyses revealed hypertrophy-specific expression signatures unique to FRDA cardiomyocytes, and emphasized similarities between unaffected and ZFN-corrected FRDA cardiomyocytes. Thus, the iPSC-derived FRDA cardiomyocytes exhibit various molecular defects characteristic for cellular models of cardiomyopathy that can be corrected by genome editing of the expanded GAA repeats. These results underscore the utility of genome editing in generating isogenic cellular models of FRDA and the potential of this approach as a future therapy for this disease.
Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to<1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community.
High-quality genomic resources facilitate population-level and species-level comparisons to answer questions about behavioral ecology, morphological and physiological adaptations, as well as the evolution of genomic architecture. Squamate reptiles (lizards and snakes) are particularly diverse in characteristics that have intrigued evolutionary biologists, but high-quality genomic resources for squamates are relatively sparse. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. We present a high-quality chromosome-level reference genome assembly, SceUnd1.0, (utilizing 10X Genomics Chromium, HiC, and PacBio data) and tissue/developmental stage transcriptomes for the Eastern Fence Lizard, Sceloporus undulatus. We performed synteny analysis with other available squamate chromosome-level assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes in S. undulatus. Using this new S. undulatus genome assembly we conducted reference-based assemblies for 34 other Sceloporus species to improve draft nuclear genomes assemblies from 1% coverage to 43% coverage on average. Across these species, typically >90% of reads mapped for species within 20 million years divergence from S. undulatus, this dropped to 75% reads mapped for species at 35 million years divergence. Finally we use RNAseq and whole genome resequencing data to compare the three assemblies as references, each representing an increased level of sequencing, cost and assembly efforts: Supernova Assembly with data from10X Genomics Chromium library; HiRise Assembly that added data from HiC library; and PBJelly Assembly that added data from PacBio sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq, but the chromosome-level scaffolds provided by the addition of the HiC data allowed the reference to be used for other whole genome analysis, including synteny and whole genome association mapping analyses. The addition of PacBio data provided negligible gains. Overall, these new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology.
A national survey of biology instructors shows that instructors view the primary goal of science education as “understanding the world,” yet instructors hesitate to incorporate societally relevant content. This study addresses how an ideological awareness curriculum may bridge this gap and how instructor values and hesitancies affect teaching practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.