Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterised by TDP-43 pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here, we have created a novel TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331K mice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed leading to a gain of TDP-43 function, and altered splicing of Mapt, another pivotal dementia gene. Furthermore, a novel approach to stratify transcriptomic data by phenotype in differentially affected mutant mice reveals 471 changes linked with improved behaviour. These changes include downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD, and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.
Decision making in both animals and humans is influenced by the anticipation of reward and/or punishment. Little is known about how reward and punishment interact in the context of decision making. The Avoidance-Reward Conflict (ARC) Task is a new paradigm that varies the degree of reward and the probability of punishment in a single paradigm that can be used in both non-human primates (NHPs) and humans. This study examined the behavioral pattern in the ARC task in both NHPs and humans. Two adult male NHPs (macaca mulatta) and 20 healthy human volunteers (12 females) participated in the ARC task. NHPs and humans perform similarly on the ARC task. With a high probability of punishment (an aversive air puff to the eye), both NHPs and humans are more likely to forgo reward if it is small or medium magnitude than when it is large. Both NHPs and humans perform similarly on the same behavioral task suggesting the reliability of animal models in predicting human behavior.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that has significant overlap with frontotemporal dementia (FTD). Mutations in specific genes have been identified that can cause and/or predispose patients to ALS. However, the clinical variability seen in ALS patients suggests that additional genes impact pathology, susceptibility, severity, and/or progression of the disease. To identify molecular pathways involved in ALS, we undertook a meta-analysis of published genetic modifiers both in patients and in model organisms, and undertook bioinformatic pathway analysis. From 72 published studies, we generated a list of 946 genes whose perturbation (1) impacted ALS in patient populations, (2) altered defects in laboratory models, or (3) modified defects caused by ALS gene ortholog loss of function. Herein, these are all called modifier genes. We found 727 modifier genes that encode proteins with human orthologs. Of these, 43 modifier genes were identified as modifiers of more than one ALS gene/model, consistent with the hypothesis that shared genes and pathways may underlie ALS. Further, we used a gene ontology-based bioinformatic analysis to identify pathways and associated genes that may be important in ALS. To our knowledge this is the first comprehensive survey of ALS modifier genes. This work suggests that shared molecular mechanisms may underlie pathology caused by different ALS disease genes. Surprisingly, few ALS modifier genes have been tested in more than one disease model. Understanding genes that modify ALS-associated defects will help to elucidate the molecular pathways that underlie ALS and provide additional targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.