Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. Recent evidence has suggested that impairments of innate immunity may play an important role in ASD. To test this hypothesis, we isolated peripheral blood monocytes from 17 children with ASD and 16 agematched typically developing (TD) controls and stimulated these cell cultures in vitro with distinct toll-like receptors (TLR) ligands: TLR2 (lipoteichoic acid; LTA), TLR3 (poly I:C), TLR4 (lipopolysaccharide; LPS), TLR5 (flagellin) and TLR9 (CpG-B). Supernatants were harvested from the cell cultures and pro-inflammatory cytokine responses for IL-1β, IL-6, IL-8, TNFα, MCP-1, and GM-CSF were determined by multiplex Luminex analysis. After in vitro challenge with TLR ligands, differential cytokine responses were observed in monocyte cultures from children with ASD compared with TD control children. In particular, there was a marked increase in pro-inflammatory IL-1β, IL-6 and TNFα responses following TLR2, and IL-1β response following TLR4 stimulation in monocyte cultures from children with ASD (p<0.04). Conversely, following TLR9 stimulation there was a decrease in IL-1β, IL-6, GM-CSF and TNFα responses in monocyte cell cultures from children with ASD compared with controls (p<0.05). These data indicate that, monocyte cultures from children with ASD are more responsive to signaling via select TLRs. As monocytes are key regulators of the immune response, dysfunction in the response of these cells could result in long-term immune alterations in children with ASD that may lead to the development of adverse neuroimmune interactions and could play a role in the pathophysiology observed in ASD.
Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNγ) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNγ in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development.
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. There is evidence of both immune dysregulation and autoimmune phenomena in autism. We examined the regulatory cytokine transforming growth factor beta-1 (TGFβ1) because of its role in controlling immune responses. Plasma levels of active TGFβ1 were evaluated in 75 children with ASD compared with 96 controls. Children with ASD had significantly lower plasma TGFβ1 levels compared with typically developing controls (p=0.0017) and compared with children with developmental disabilities other than ASD (p=0.0037) but not siblings, after adjusting for age and gender. In addition, there were significant correlations between psychological measures and TGFβ1 levels, such that lower TGFβ1 levels were associated with lower adaptive behaviors and worse behavioral symptoms. The data suggest that immune responses in autism may be inappropriately regulated due to reductions in TGFβ1. Such immune dysregulation may predispose to the development of possible autoimmune responses and/ or adverse neuroimmune interactions during critical windows in development.
Purpose: Limited options exist for patients with advanced pancreatic cancer progressing after 1 or more lines of therapy. A phase II study in patients with previously treated metastatic pancreatic cancer showed that combining GVAX pancreas (granulocyte-macrophage colony-stimulating factor-secreting allogeneic pancreatic tumor cells) with cyclophosphamide (Cy) and CRS-207 (live, attenuated Listeria monocytogenes expressing mesothelin) resulted in median overall survival (OS) of 6.1 months, which compares favorably with historical OS achieved with chemotherapy. In the current study, we compared Cy/GVAX þ CRS-207, CRS-207 alone, and standard chemotherapy in a three-arm, randomized, controlled phase IIb trial. Patients and Methods: Patients with previously treated metastatic pancreatic adenocarcinoma were randomized 1:1:1 to receive Cy/GVAX þ CRS-207 (arm A), CRS-207 (arm B), or physician's choice of single-agent chemotherapy (arm C). The primary cohort included patients who had failed !2 prior lines of therapy, including gemcitabine. The primary objective compared OS between arms A and C in the primary cohort. The second-line cohort included patients who had received 1 prior line of therapy. Additional objectives included OS between all treatment arms, safety, and tumor responses. Results: The study did not meet its primary efficacy endpoint. At the final study analysis, median OS [95% confidence interval (CI)] in the primary cohort (N ¼ 213) was 3.7 (2.9-5.3), 5.4 (4.2-6.4), and 4.6 (4.2-5.7) months in arms A, B, and C, respectively, showing no significant difference between arm A and arm C [P ¼ not significant (NS), HR ¼ 1.17; 95% CI, 0.84-1.64]. The most frequently reported adverse events in all treatment groups were chills, pyrexia, fatigue, and nausea. No treatment-related deaths occurred. Conclusions: The combination of Cy/GVAX þ CRS-207 did not improve survival over chemotherapy. (ClinicalTrials.gov ID: NCT02004262) See related commentary by Salas-Benito et al., p. 5435
Accumulating evidence indicates that immune dysfunction is associated with autism disorders in a significant subset of children. Previous reports have shown abnormal immunoglobulin (Ig) levels, including an increased presence of autoreactive antibodies in the circulation of individuals with autism. As IgG is the predominant antibody isotype in circulation, we expected that an altered immune response could result in an abnormal IgG subclass profile in children with autism. We examined circulating plasma levels of IgG1, IgG2, IgG3, and IgG4 in 241 children from the CHARGE (Childhood Autism Risks from Genetics and the Environment) study, a large epidemiologic case-control investigation, including 114 children who meet full criteria for autism disorder (AU), 96 typically developing control children (TD) from a randomly selected sample of the general population, and 31 children with developmental delays (DD). We report significantly increased levels of the IgG4 subclass in children with AU compared with TD control children (p=0.016) and compared with DD controls (p=0.041). These results may suggest an underlying immunological abnormality in AU subjects resulting in elevated IgG4 production. Further investigation is necessary to elucidate the relationship between immunological findings and behavioral impairments in autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.