Leptospirosis is an emerging infectious disease caused by pathogenic species of Leptospira. In this work, we report the cloning, expression, purification, and characterization of two predicted leptospiral outer membrane proteins, LIC11469 and LIC11030. The LIC11469 protein is well conserved among leptospiral strains, while LIC11030 was identified only in Leptospira interrogans. We confirmed by surface proteolysis of intact leptospires with proteinase K that these proteins are most likely new surface leptospiral proteins. The recombinant proteins were evaluated for their capacity to attach to extracellular matrix (ECM) components and to plasminogen. The leptospiral protein encoded by LIC11469, named Lsa20 (leptospiral surface adhesin of 20 kDa), binds to laminin and to plasminogen. The binding with both components was not detected when Lsa20 was previously denatured or blocked with anti-Lsa20 antibodies. Moreover, Lsa20 binding to laminin was also confirmed by surface plasmon resonance (SPR). Laminin competes with plasminogen for binding to Lsa20, suggesting the same ligand-binding site. Lsa20-bound plasminogen could be converted to enzymatically active plasmin, capable of cleaving plasmin substrate D-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Lsa20 was recognized by antibodies in confirmed-leptospirosis serum samples, suggesting that this protein is expressed during infection. Taken together, our results indicate that Lsa20 is a novel leptospiral adhesin that in concert with the host-derived plasmin may help the bacteria to adhere and to spread through the hosts.
Haemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon resulting in capillary disruption and extravasation. This study analysed structural elements important for the interaction of four Bothrops jararaca SVMPs of different domain organisation and glycosylation levels with plasma and extracellular matrix proteins: HF3 (P-III class) is highly glycosylated and ~80 times more haemorrhagic than bothropasin (P-III class), which has a minor carbohydrate moiety; BJ-PI (P-I class) is not haemorrhagic and the DC protein is composed of disintegrin-like/cysteine-rich domains of bothropasin. HF3, bothropasin and BJ-PI showed different degradation profiles of fibrinogen, fibronectin, vitronectin, von Willebrand factor, collagens IV and VI, laminin and Matrigel; however, only bothropasin degraded collagen I. In solid-phase binding assays HF3 and bothropasin interacted with fibrinogen, fibronectin, laminin, collagens I and VI; the DC protein bound only to collagens I and VI; however, no binding of BJ-PI to these proteins was detected. N-deglycosylation caused loss of structural stability of bothropasin and BJ-PI but HF3 remained intact, although its haemorrhagic and fibrinogenolytic activities were partially impaired. Nevertheless, N-deglycosylated HF3 bound with higher affinity to collagens I and VI, although its proteolytic activity upon these collagens was not enhanced. This study demonstrates that features of carbohydrate moieties of haemorrhagic SVMPs may play a role in their interaction with substrates of the extracellular matrix, and the ability of SVMPs to degrade proteins in vitro does not correlate to their ability to cause haemorrhage, suggesting that novel, systemic approaches are necessary for understanding the mechanism of haemorrhage generation by SVMPs.
Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca(2+) -calmodulin (CaM) and 14-3-3ε, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 μM, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3ε with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca(2+) concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.