To evaluate evidence for motor impairment specificity in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Children completed performance-based assessment of motor functioning (Movement Assessment Battery for Children: MABC-2). Logistic regression models were used to predict group membership. In the models comparing typically developing and developmental disability (DD), all three MABC sub-scale scores were significantly negatively associated with having a DD. In the models comparing ADHD and ASD, catching and static balance items were associated with ASD group membership, with a 1 point decrease in performance increasing odds of ASD by 36 and 39 %, respectively. Impairments in motor skills requiring the coupling of visual and temporal feedback to guide and adjust movement appear specifically deficient in ASD.
The need for appropriate multiple comparisons correction when performing statistical inference is not a new problem. However, it has come to the forefront in many new modern data-intensive disciplines. For example, researchers in areas such as imaging and genetics are routinely required to simultaneously perform thousands of statistical tests. Ignoring this multiplicity can cause severe problems with false positives, thereby introducing non-reproducible results into the literature. This article serves as an introduction to hypothesis testing and multiple comparisons for practical research applications, with a particular focus on its use in the analysis of functional magnetic resonance imagining (fMRI) data. We will discuss hypothesis testing and a variety of principled techniques for correcting for multiple tests. We also illustrate potential pitfalls and problems that can occur if the multiple comparisons issue is not dealt with properly. We conclude by discussing effect size estimation, an issue often linked with the multiple comparisons problem.
Science is undergoing rapid change with the movement to improve science focused largely on reproducibility/replicability and open science practices. This moment of change—in which science turns inward to examine its methods and practices—provides an opportunity to address its historic lack of diversity and noninclusive culture. Through network modeling and semantic analysis, we provide an initial exploration of the structure, cultural frames, and women’s participation in the open science and reproducibility literatures (n = 2,926 articles and conference proceedings). Network analyses suggest that the open science and reproducibility literatures are emerging relatively independently of each other, sharing few common papers or authors. We next examine whether the literatures differentially incorporate collaborative, prosocial ideals that are known to engage members of underrepresented groups more than independent, winner-takes-all approaches. We find that open science has a more connected, collaborative structure than does reproducibility. Semantic analyses of paper abstracts reveal that these literatures have adopted different cultural frames: open science includes more explicitly communal and prosocial language than does reproducibility. Finally, consistent with literature suggesting the diversity benefits of communal and prosocial purposes, we find that women publish more frequently in high-status author positions (first or last) within open science (vs. reproducibility). Furthermore, this finding is further patterned by team size and time. Women are more represented in larger teams within reproducibility, and women’s participation is increasing in open science over time and decreasing in reproducibility. We conclude with actionable suggestions for cultivating a more prosocial and diverse culture of science.
Cortical surface fMRI (cs-fMRI) has recently grown in popularity versus traditional volumetric fMRI, as it allows for more meaningful spatial smoothing and is more compatible with the common assumptions of isotropy and stationarity in Bayesian spatial models. However, as no Bayesian spatial model has been proposed for cs-fMRI data, most analyses continue to employ the classical, voxel-wise general linear model (GLM) (Worsley and Friston 1995). Here, we propose a Bayesian GLM for cs-fMRI, which employs a class of sophisticated spatial processes to flexibly model latent activation fields. We use integrated nested Laplacian approximation (INLA), a highly accurate and efficient Bayesian computation technique (Rue et al. 2009). To identify regions of activation, we propose an excursions set method based on the joint posterior distribution of the latent fields, which eliminates the need for multiple comparisons correction. Finally, we address a gap in the existing literature by proposing a novel Bayesian approach for multi-subject analysis. The methods are validated and compared to the classical GLM through simulation studies and a motor task fMRI study from the Human Connectome Project. The proposed Bayesian approach results in smoother activation estimates, more accurate false positive control, and increased power to detect truly active regions.
Inference in neuroimaging typically occurs at the level of focal brain areas or circuits. Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects distributed throughout the brain, suggesting that many focal reports may only reflect the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives influence the inferences we make has not yet been comprehensively evaluated using real data. Here, we compare sensitivity and specificity across procedures representing multiple levels of inference using an empirical benchmarking procedure that resamples task-based connectomes from the Human Connectome Project dataset (∼1,000 subjects, 7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network and whole brain) procedures obtained the traditional 80% statistical power level to detect an average effect, reflecting >20% more statistical power than focal (edge and cluster) procedures. Power also increased substantially for false discovery rate– compared with familywise error rate–controlling procedures. The downsides are fairly limited; the loss in specificity for broad-scale and FDR procedures was relatively modest compared to the gains in power. Furthermore, the broad-scale methods we introduce are simple, fast, and easy to use, providing a straightforward starting point for researchers. This also points to the promise of more sophisticated broad-scale methods for not only functional connectivity but also related fields, including task-based activation. Altogether, this work demonstrates that shifting the scale of inference and choosing FDR control are both immediately attainable and can help remedy the issues with statistical power plaguing typical studies in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.