Natural disasters are to blame for the high level of community loss. This is due to the community's lack of information about potential disasters around them. As a result, public understanding of disaster response is extremely low. As a result, weather information is critical for the smooth operation of human activities and activities, such as determining the amount of rainfall. The goal of this research is to identify the best model for predicting rainfall in North Sumatra Province and to forecast rainfall trends for the coming year. The rainfall time series data used in this study were collected from six stations in North Sumatra Province over the last ten years, including the Sibolga Meteorological Station, Aek Godang Meteorological Station, and Silangit Meteorological Station. Backpropagation is used in this study. Backpropagation is one of the methods used in artificial neural networks, which are usually divided into three layers: an input layer, a hidden layer, and an output layer connected by weights. During the training stage, the learning rate, iteration, and number of nodes in the hidden layer were all tested. Following the training process, the best model will be used for testing. The best model was obtained using rainfall data from North Sumatra Province, with an optimal iteration of 1000 iterations, an optimal learning rate of 0.1 in the learning rate trial, and the best number of hidden 5 nodes. During the testing, the MSE values were 0.047 and 0.022, respectively, and the MSE squared value was 0.0022 and 0.00049.
Poverty reduction is a crucial issue and the primary The North Sumatra Provincial government's main concern is lowering the poverty rate, which is a crucial issue. The Province of North Sumatra in Indonesia, one of many nations affected by the Covid-19 pandemic, is particularly troubled economically. In this study, poverty levels were mapped using the K-Means algorithm, and GRNN was then utilized for modeling and prediction. The data source used is time series data from 2010 to 2020 from the Central Statistics Agency (BPS), which includes variables X covering population, health, education, unemployment, and asset ownership and variable Y representing poverty level. The goal of this study is to choose the best model for estimating poverty levels in North Sumatra Province. The districts and cities of Deli Serdang and Medan have the greatest rates of poverty, according to the K-means algorithm's mapping of poverty levels. Additionally, the results of the predicting produced MSE values of 0.004659 and RMSE values of 0.00002108. The value of the smoothness parameter is 0.01.
Psychologists and child education experts always remind the importance of knowing interests and talents from an early age to provide a stimulus to children from an early age, because the provision of the stimulus affects the future of children. This study aims to (1) To make calculations in mathematical models to calculate and analyze the interests of children's talents using applications. (2) To create a web-based information system that can facilitate teachers and parents in determining the interests of children's talents at the Al-Ikhlas Taqwa Plus Elementary School using the Certainty Factor method. The method used in this research is the research and development (R&D) method using the certainty factor. The population in this study were all students of SD Plus Al Ikhlas Taqwa Medan T.P 2021/2022 starting from grades 3-6. Sampling was done by purposive sampling technique. Data collection was carried out by interviews, material expert test questionnaires, and media experts, and the results of the children's talent interest questionnaire were processed using the Certainty Factor. The results of this study are the results of interest and talent analysis based on 7 intelligence criteria and also the highest summary results from several criteria with one of the tests yielding a percentage of 93.58% in the field of linguistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.