ABSTRACT. Landfarming biodegradation is a strategy used by the petrochemical industry to reduce pollutants in petroleum-contaminated soil. We constructed 2 metagenomic libraries from landfarming soil in order to determine the pathway used for mineralization of benzene and to examine protein expression of the bacteria in these soils. The DNA of landfarm soil, collected from Ilhéus, BA, Brazil, was extracted and a metagenomic library was constructed with the Copy Control TM Fosmid Library Production Kit, which clones 25-45-kb DNA fragments. The clones were selected for their ability to express enzymes capable of cleaving aromatic compounds. These clones were grown in Luria-Bertani broth plus L-arabinose, benzene, and Metagenomic DNA libraries of landfarm soil microorganisms chloramphenicol as induction substances; they were tested for activity in the catechol cleavage pathway, an intermediate step in benzene degradation. Nine clones were positive for ortho-cleavage and one was positive for meta-cleavage. Protein band patterns determined by SDS-polyacrylamide gel electrophoresis differed in bacteria grown on induced versus non-induced media (Luria-Bertani broth). We concluded that the DNA of landfarm soil is an important source of genes involved in mineralization of xenobiotic compounds, which are common in gasoline and oil spills. Metagenomic library allows identification of non-culturable microorganisms that have potential in the bioremediation of contaminated sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.