Although satellite retrievals and data assimilation have progressed to where there is a good skill for monitoring maritime Aerosol Optical Depth (AOD), there remains uncertainty in achieving further degrees of freedom, such as distinguishing fine and coarse mode dominated species in maritime environments (e.g., coarse mode sea salt and dust versus fine mode terrestrial anthropogenic emissions, biomass burning, and maritime secondary production). For the years 2016 through 2019, we performed an analysis of 550 nm total AOD550, fine mode AOD (FAOD550; also known as FM AOD in the literature), coarse mode AOD (CAOD550), and fine mode fraction (η550) between Moderate Resolution Spectral Imaging Radiometer (MODIS) V6.1 MOD/MYD04 dark target aerosol retrievals and the International Cooperative for Aerosol Prediction (ICAP) core four multi-model consensus (C4C) of analyses/short term forecasts that assimilate total MODIS AOD550. Differences were adjudicated by the global shipboard Maritime Aerosol Network (MAN) and selected island AERONET sun photometer observations with the application of the spectral deconvolution algorithm (SDA). Through a series of conditional and regional analyses, we found divergence included regions of terrestrial influence and latitudinal dependencies in the remote oceans. Notably, MODIS and the C4C and its members, while having good correlations overall, have a persistent +0.04 to +0.02 biases relative to MAN and AERONET for typical AOD550 values (84th% < 0.28), with the C4C underestimating significant events thereafter. Second, high biases in AOD550 are largely associated with the attribution of the fine mode in satellites and models alike. Thus, both MODIS and C4C members are systematically overestimating AOD550 and FAOD550 but perform better in characterizing the CAOD550. Third, for MODIS, findings are consistent with previous reports of a high bias in the retrieved Ångström Exponent, and we diagnosed both the optical model and cloud masking as likely causal factors for the AOD550 and FAOD550 high bias, whereas for the C4C, it is likely from secondary overproduction and perhaps numerical diffusion. Fourth, while there is no wind-speed-dependent bias for surface winds <12 m s−1, the C4C and MODIS AOD550s also overestimate CAOD550 and FAOD550, respectively, for wind speeds above 12 m/s. Finally, sampling bias inherent in MAN, as well as other circumstantial evidence, suggests biases in MODIS are likely even larger than what was diagnosed here. We conclude with a discussion on how MODIS and the C4C products have their own strengths and challenges for a given climate application and discuss needed research.
Abstract. While the use and data assimilation (DA) of operational Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data is commonplace, MODIS is scheduled to sunset in the next year. For data continuity, focus has turned to the development of next generation aerosol products and sensors such as those associated with the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPOESS Preparation Project (S-NPP) and NOAA-20. Like MODIS algorithms, products from these sensors require their own set of extensive error characterization and correction exercises. This is particularly true in the context of monitoring significant aerosol events that tax an algorithm’s ability to separate cloud from aerosol and account for multiple scattering related errors exacerbated by uncertainties in aerosol optical properties. To investigate the performance of polar orbiting satellite algorithms to monitor and characterize significant events a Level 3 (L3) product has been developed, using a consistent aggregation methodology, for four years of observations (2016–2019). Included in this product is AErosol RObotic NETwork (AERONET), MODIS Dark Target, Deep Blue, and Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithms. These MODIS “baseline algorithms” are compared to NASA’s recently released NASA Deep Blue algorithm for use with VIIRS. Using this new dataset, the relative performance of the algorithms for both land and ocean were investigated with a focus on the relative skill of detecting severe events and accuracy of the retrievals using AERONET. Maps of higher percentile AOD regions of the world by product, identified those with the highest measured AODs, and determined what is high by local standards. While patterns in AOD match across products and median to moderate AOD values match well, there are regionally correlated biases between products based on sampling, algorithm differences, and AOD range-in particular for higher AOD events. Most notable are differences in Boreal biomass burning and Saharan dust. Significant percentile biases that must be accounted for when data is used in trend studies, data assimilation, or inverse modeling. These biases vary by aerosol regime and are likely due to retrieval assumptions on lower boundary condition and aerosol optical models.
No abstract
Abstract. While the use and data assimilation (DA) of operational Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data is commonplace, MODIS is scheduled to sunset in the next year. For data continuity, focus has turned to the development of next-generation aerosol products and sensors such as those associated with the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPOESS Preparation Project (S-NPP) and NOAA-20. Like MODIS algorithms, products from these sensors require their own set of extensive error characterization and correction exercises. This is particularly true in the context of monitoring significant aerosol events that tax an algorithm's ability to separate cloud from aerosol and account for multiple scattering related errors exacerbated by uncertainties in aerosol optical properties. To investigate the performance of polar-orbiting satellite algorithms to monitor and characterize significant events, a level 3 (L3) product has been developed using a consistent aggregation methodology for 4 years of observations (2016–2019) that is referred to as the SSEC/NRL L3 product. Included in this product are the AErosol RObotic NETwork (AERONET), MODIS Dark Target, Deep Blue, and Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithms. These MODIS “baseline algorithms” are compared to NASA's recently released NASA Deep Blue algorithm for use with VIIRS. Using this new dataset, the relative performance of the algorithms for both land and ocean were investigated with a focus on the relative skill of detecting severe events and accuracy of the retrievals using AERONET. Maps of higher-percentile aerosol optical depth (AOD) regions of the world by product identified those with the highest measured AODs and determined what is high by local standards. While patterns in AOD match across products and median to moderate AOD values match well, there are regionally correlated biases between products based on sampling, algorithm differences, and AOD range – in particular for higher AOD events. Most notable are differences in boreal biomass burning and Saharan dust. Significant percentile biases must be accounted for when data are used in trend studies, data assimilation, or inverse modeling. These biases vary by aerosol regime and are likely due to retrieval assumptions in lower boundary conditions and aerosol optical models.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.