The Cape Fear shiner (Notropis mekistocholas) is a recently described cyprinid species endemic to the Cape Fear River Basin of North Carolina, USA. Only five populations of the fish remain; thus, it is listed as endangered by the U.S. Government. Determining habitat requirements of the Cape Fear shiner, including water quality and physical habitat, is critical to the survival and future restoration of the species. To assess water quality in the best remaining and in the historical habitats, we conducted a 28-d in situ bioassay with captively propagated Cape Fear shiners. Fish were deployed at 10 sites in three rivers, with three cages per site and 20 fish per cage. Water and sediment samples were collected and analyzed for selected metals and organic contaminants. Passive sampling devices also were deployed at each site and analyzed for organic contaminants at test termination. Fish survival, growth (as measured by an increase in total length), and contaminant accumulation were measured on completion of the bioassay. Survival of caged fish averaged 76% (range, 53-100%) and varied significantly among sites and rivers. Caged fish accumulated quantities of cadmium, mercury, polychlorinated biphenyls, and other persistent contaminants over the test duration and grew significantly at only four sites. No apparent relations were observed between exposure to or accumulation of a specific contaminant and reduced growth or survival of fish among all the sites. However, a generalized hazard assessment showed that certain sites exhibited trends in cumulative contaminant presence with reduced fish survival and growth, thereby enabling the identification of the existing riverine habitat most suitable for reintroduction or population augmentation of this endangered fish.
Abstract.-The Cape Fear shiner Notropis mekistocholas is an endangered minnow endemic to the Cape Fear River basin of North Carolina; only five populations remain, all of which are declining. Determining the population densities and habitat requirements of the species is critical to its survival and restoration planning. We conducted population surveys (four sites) and instream microhabitat suitability analyses (six sites) on the Rocky and Deep rivers to (1) estimate the population density of Cape Fear shiners, (2) quantify the use, availability, and suitability of microhabitats, and (3) determine whether physical habitat alterations were a likely cause of local extirpations and whether instream habitat limits the occurrence and density of this species. Density ranged from 795 fish/ha to 1,393 fish/ha (4,768-7,392 fish/km) at three of the sites surveyed and was too low to be estimated at the fourth site. The fish most frequently occupied riffles and velocity breaks at moderate depths over gravel substrates. It occupied microhabitats nonrandomly with respect to availability; the microhabitats occupied were similar between spawning and postspawning seasons but shallower during spawning. Comparisons of suitable habitat among sites where the fish is extant, rare, or extirpated suggest that suitable substrate (gravel) is lacking where the fish is rare and that suitable microhabitat combinations, especially with respect to water velocity, are rare at all sites. Potential reintroduction sites where the species is rare or extirpated were shallower than extant sites, and one site where the fish is extirpated contained suitable physical habitat but lacked adequate water quality. Another site where the species is rare would require substrate alteration to improve conditions. The survival and recovery of the Cape Fear shiner is dependent on the protection of remaining suitable physical habitat with approaches that consider instream habitat, water quality, and biotic interactions as well as human uses and alterations of the river, riparian zone, and watershed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.