Breast cancer subtypes are currently defined by a combination of morphologic, genomic, and proteomic characteristics. These subtypes provide a molecular portrait of the tumor that aids diagnosis, prognosis, and treatment escalation/de-escalation options. Gene expression signatures describing intrinsic breast cancer subtypes for predicting risk of recurrence have been rapidly adopted in the clinic. Despite the use of subtype classifications, many patients develop drug resistance, breast cancer recurrence, or therapy failure. Areas covered: This review provides a summary of immunohistochemistry, reverse phase protein array, mass spectrometry, and integrative studies that are revealing differences in biological functions within and between breast cancer subtypes. We conclude with a discussion of rigor and reproducibility for proteomic-based biomarker discovery. Expert commentary: Innovations in proteomics, including implementation of assay guidelines and standards, are facilitating refinement of breast cancer subtypes. Proteomic and phosphoproteomic information distinguish biologically functional subtypes, are predictive of recurrence, and indicate likelihood of drug resistance. Actionable, activated signal transduction pathways can now be quantified and characterized. Proteomic biomarker validation in large, well-designed studies should become a public health priority to capitalize on the wealth of information gleaned from the proteome.
Despite continued research efforts, the threat of drug resistance from a variety of bacteria continues to plague clinical communities. Discovery and validation of novel biochemical targets will facilitate development of new drugs to combat these organisms. The methylerythritol phosphate (MEP) pathway to make isoprene units is a biosynthetic pathway essential to many bacteria. We and others have explored inhibitors of the MEP pathway as novel antibacterial agents. Mycobacterium tuberculosis, the causative agent of tuberculosis, and Yersinia pestis, resulting in the plague or “black death,” both rely on the MEP pathway for isoprene production. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) catalyzes the first committed step in the MEP pathway. We examined two series of Dxr inhibitors based on the parent structure of the retrohydroxamate natural product FR900098. The compounds contain either an extended N-acyl or O-linked alkyl/aryl group, and are designed to act as bisubstrate inhibitors of the enzyme. While nearly all of the compounds inhibited both Mtb and Yp Dxr to some extent, compounds generally displayed more potent inhibition against the Yp homolog, with the best analogs displaying nM IC50 values. In bacterial growth inhibition assays, the phosphonic acids generally resulted in poor antibacterial activity, likely a reflection of inadequate permeability. Accordingly, diethyl and diPOM prodrug esters of these compounds were made. While the added lipophilicity did not enhance Yersinia activity, the compounds showed significantly improved antitubercular activities. The most potent compounds have Mtb MIC values of 3–12 µg/mL. Taken together, we have uncovered two series of analogs that potently inhibit Dxr homologs from Mtb and Yp. These inhibitors of the MEP pathway, termed MEPicides, serve as leads for future analog development.
In most bacteria, the nonmevalonate pathway is used to synthesize isoprene units. Dxr, the second step in the pathway, catalyzes the NADPH-dependent reductive isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol-4-phosphate (MEP). Dxr is inhibited by natural products fosmidomycin and FR900098, which bind in the DXP binding site. These compounds, while potent inhibitors of Dxr, lack whole cell activity against Mycobacterium tuberculosis (Mtb) due to their polarity. Our goal was to use the Mtb Dxr-fosmidomycin co-crystal structure to design bisubstrate ligands to bind to both the DXP and NADPH sites. Such compounds would be expected to demonstrate improved whole cell activity due to increased lipophilicity. Two series of compounds were designed and synthesized. Compounds from both series inhibited Mtb Dxr. The most potent compound (8) has an IC50 of 17.8 µM. Analysis shows 8 binds to Mtb Dxr via a novel, non-bisubstrate mechanism. Further, the diethyl ester of 8 inhibits Mtb growth making this class of compounds interesting lead molecules in the search for new antitubercular agents.
Inhibition of the nonmevalonate pathway (NMP) of isoprene biosynthesis has been examined as a source of new antibiotics with novel mechanisms of action. Dxr is the best studied of the NMP enzymes and several reports have described potent Dxr inhibitors. Many of these compounds are structurally related to natural products fosmidomycin and FR900098, each bearing retrohydroxamate and phosphonate groups. We synthesized a series of compounds with two to five methylene units separating these groups to examine what linker length was optimal and tested for inhibition against Mtb Dxr. We synthesized ethyl and pivaloyl esters of these compounds to increase lipophilicity and improve inhibition of Mtb growth. Our results show that propyl or propenyl linker chains are optimal. Propenyl analog 22 has an IC50 of 1.07 μM against Mtb Dxr. The pivaloyl ester of 22, compound 26, has an MIC of 9.4 μg/mL, representing a significant improvement in antitubercular potency in this class of compounds.
ABSTRACT. In the wake of the escalating development of resistance to currently available drugs, blocking the vital MEP pathway for isoprenoid biosynthesis in pathogens such as Plasmodia or Mycobacteria offers interesting prospects for inhibiting their growth. Although the natural product retro-hydroxamate fosmidomycin and its homologue FR900098 potently inhibit 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in the MEP pathway, their in vivo activity is compromised due to poor absorption and a suboptimal pharmacokinetic profile. In an effort to facilitate cellular uptake, we introduced aryl or aralkyl substituents at the β-position of the hydroxamate analogue of FR900098. While direct addition of a β-aryl moiety resulted in poor inhibition, longer linkers between the carbon backbone and the phenyl ring were generally associated with better binding to the enzymes, as well as activity against P. falciparum.X-ray structures of the parasite Dxr-inhibitor complexes show that the modes of binding of the two classes of compounds are in fact different. When the "shorter" compounds were bound, the active site flap was fully ordered and similar to that observed for the retro-hydroxamates. The "longer" compounds generate a substantially different flap structure, in which a key tryptophan residue is displaced, and the aromatic group of the ligand lies between the tryptophan and the methyl group on the hydroxamate. Although the most promising new Dxr inhibitors lack activity against E. coli and M. smegmatis, they proved to be highly potent inhibitors of Plasmodium falciparum in vitro growth.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.