The accessioning of ancient textiles into museum collections often requires objective information regarding the object’s appropriateness and authenticity before purchase or gift acceptance. In the case of colored fabrics, the identification of dyestuffs consistent with the attributed time period and culture builds confidence and reduces the chances of the object being a simple forgery or fake produced using modern materials. Moreover, this information adds to the technical, cultural, and conservation knowledge regarding the object. Increasingly, chronometric age estimates in the form of radiocarbon dating are also needed to establish the object’s age or to further prove the materials match the purported date range of the textile. Each of these analyses consumes a small sample of the object, and typically they are conducted separately by different laboratories on individual sample yarns. This report demonstrates for the first time the sequential, combined analysis of dyes by liquid chromatography-diode array detection-mass spectrometry and radiocarbon dating of the same residual dye-extracted sample. The chemicals and solvents used in various dye extraction protocols are shown not to contaminate the extracted yarns for radiocarbon dating purposes. The approach was used in the authentication study of an ancient Nazca tunic made from natural fibers (wool) and dyes (indigoids, anthraquinones, and flavonoids) shown to have most likely been produced between 595 and 665 CE.
The exploitation of natural sources and later synthetic molecules to generate blue to purple coloration in textiles has a long history in the dyer's craft. Natural indigoids such as indigo, woad, and Tyrian or shellfish purple served this purpose for millennia, but in the late 1800s synthetic analogs, in particular indigotin, quickly replaced natural sources. Halogenated versions of the dye were also created, and some like 5,5′-dibromoindigo were brought to market. Interestingly, these have not been significantly discussed in the literature, nor have they been found in forensic or technical art history investigations of textiles until now. This paper reports the first identification in a museum context of this unusual synthetic brominated analog of indigo, discovered on three twentieth century Japanese yukata. Analytical data collected on reference materials using liquid chromatography-mass spectrometry, UV-visible spectroscopy, Raman microspectroscopy, Fourier transform infrared spectroscopy, and X-ray fluorescence spectroscopy are provided to assist with future identifications of this relatively unknown colorant. Density functional theory applied to 5,5′-dibromoindigo was used to confirm the experimental Raman spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.