Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.
The cosmopolitan, bloom-forming diatom, Skeletonema costatum, is a prominent primary producer in coastal oceans, fixing CO2 with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) that is phylogenetically distinct from terrestrial plant RubisCO. RubisCOs are subdivided into groups based on sequence similarity of their large subunits (IA-ID, II, and III). ID is present in several major oceanic primary producers, including diatoms such as S. costatum, coccolithophores, and some dinoflagellates, and differs substantially in amino acid sequence from the well-studied IB enzymes present in most cyanobacteria and in green algae and plants. Despite this sequence divergence, and differences in isotopic discrimination apparent in other RubisCO enzymes, stable carbon isotope compositions of diatoms and other marine phytoplankton are generally interpreted assuming enzymatic isotopic discrimination similar to spinach RubisCO (IB). To interpret phytoplankton δ(13) C values, S. costatum RubisCO was characterized via sequence analysis, and measurement of its KCO2 and Vmax , and degree of isotopic discrimination. The sequence of this enzyme placed it among other diatom ID RubisCOs. Michaelis-Menten parameters were similar to other ID enzymes (KCO2 = 48.9 ± 2.8 μm; Vmax = 165.1 ± 6.3 nmol min(-1 ) mg(-1) ). However, isotopic discrimination (ε = [(12) k/(13) k - 1] × 1000) was low (18.5‰; 17.0-19.9, 95% CI) when compared to IA and IB RubisCOs (22-29‰), though not as low as ID from coccolithophore, Emiliania huxleyi (11.1‰). Variability in ε-values among RubisCOs from primary producers is likely reflected in δ(13) C values of oceanic biomass. Currently, δ(13) C variability is ascribed to physical or chemical factors (e.g. illumination, nutrient availability) and physiological responses to these factors (e.g. carbon-concentrating mechanisms). Estimating the importance of these factors from δ(13) C measurements requires an accurate ε-value, and a mass-balance model using the ε-value for S. costatum RubisCO is presented. Clearly, appropriate ε-values must be included in interpreting δ(13) C values of environmental samples.
The hydrothermal vent chemolithoautotroph Thiomicrospira crunogena grows rapidly in the presence of low concentrations of dissolved inorganic carbon (DIC) (= CO2 + HCO3 − + CO3 −2). Its genome encodes α-carbonic anhydrase (α-CA), β-CA, carboxysomal β-like CA (CsoSCA), and a protein distantly related to γ-CA. The purposes of this work were to characterize the gene products, determine whether they were differentially expressed, and identify those that are necessary for DIC uptake and fixation. When expressed in Escherichia coli, CA activity was detectable for α-CA, β-CA, and CsoSCA but not for the γ-CA-like protein. α-CA and CsoSCA but not β-CA were inhibited by sulfonamide inhibitors. CsoSCA was also inhibited by dithiothreitol. When grown under DIC limitation in chemostats, T. crunogena transcribed csoSCA more frequently than when ammonia limited, while genes encoding α-CA and β-CA were not differentially transcribed under these conditions. Cell extracts from T. crunogena grown under both DIC- and ammonia-limited conditions had CA activity that was strongly inhibited by sulfonamides, though extracts from nitrogen-limited cells had some CA activity that was resistant, perhaps due to a higher level of β-CA activity. Based on predictions from the SignalP software program, subcellular location when expressed in E. coli, and carbonic anhydrase assays conducted on intact T. crunogena cells, α-CA is located in the periplasm. However, inhibition of α-CA by acetazolamide had only a minor impact on rates of DIC uptake or fixation. Conversely, inhibition of CsoSCA with ethoxyzolamide inhibited carbon fixation but not DIC uptake, consistent with this enzyme functioning to facilitate DIC interconversion and fixation within carboxysomes.
Summary RubisCO, the CO2 fixing enzyme of the Calvin–Benson–Bassham (CBB) cycle, is responsible for the majority of carbon fixation on Earth. RubisCO fixes 12CO2 faster than 13CO2 resulting in 13C‐depleted biomass, enabling the use of δ13C values to trace CBB activity in contemporary and ancient environments. Enzymatic fractionation is expressed as an ε value, and is routinely used in modelling, for example, the global carbon cycle and climate change, and for interpreting trophic interactions. Although values for spinach RubisCO (ε = ~29‰) have routinely been used in such efforts, there are five different forms of RubisCO utilized by diverse photolithoautotrophs and chemolithoautotrophs and ε values, now known for four forms (IA, B, D and II), vary substantially with ε = 11‰ to 27‰. Given the importance of ε values in δ13C evaluation, we measured enzymatic fractionation of the fifth form, form IC RubisCO, which is found widely in aquatic and terrestrial environments. Values were determined for two model organisms, the ‘Proteobacteria’ Ralstonia eutropha (ε = 19.0‰) and Rhodobacter sphaeroides (ε = 22.4‰). It is apparent from these measurements that all RubisCO forms measured to date discriminate less than commonly assumed based on spinach, and that enzyme ε values must be considered when interpreting and modelling variability of δ13C values in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.