When stimulated by tones, the ear appears to emit tones of its own, stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs were measured in 17 chinchillas and their group delays were compared with a place map of basilar-membrane vibration group delays measured at the characteristic frequency. The map is based on Wiener-kernel analysis of responses to noise of auditory-nerve fibers corroborated by measurements of vibrations at several basilar-membrane sites. SFOAE group delays were similar to, or shorter than, basilar-membrane group delays for frequencies >4 kHz and <4 kHz, respectively. Such short delays contradict the generally accepted "theory of coherent reflection filtering" [Zweig and Shera, J. Acoust. Soc. Am. 98, 2018-2047 (1995)], which predicts that the group delays of SFOAEs evoked by low-level tones approximately equal twice the basilar-membrane group delays. The results for frequencies higher than 4 kHz are compatible with hypotheses of SFOAE propagation to the stapes via acoustic waves or fluid coupling, or via reverse basilar membrane traveling waves with speeds corresponding to the signal-front delays, rather than the group delays, of the forward waves. The results for frequencies lower than 4 kHz cannot be explained by hypotheses based on waves propagating to and from their characteristic places in the cochlea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.