Ion‐induced assembly: Supramolecular structures are obtained in solution by a new ion‐induced assembly of conjugated Schiff‐base macrocycles. A distinct color change accompanies the aggregation, as shown in the photo. Shown: Macrocycle (A); with NaBPh4 (B); with KBPh4 (C); with RbBPh4 (D); with CsBPh4 (E); and with NH4BPh4 (F) in CH2Cl2.
[reaction: see text] A new [3 + 3] Schiff base macrocycle incorporating naphthalene groups has been prepared. By examination of its properties, X-ray crystallography of model compounds, and calculations, it has been determined that the macrocycle exists predominantly as the keto-enamine tautomer. This unexpected tautomerization presents an unusual hexaketo interior in the macrocycle.
A family of molecular heptacadmium carboxylate clusters templated inside [3 + 3] Schiff base macrocycles has been isolated and studied by variable temperature solution and solid-state NMR spectroscopy, single-crystal X-ray diffraction (SCXRD), and density functional theory (DFT) calculations. These metallocavitand cluster complexes adopt bowl-shaped structures, induced by metal coordination, giving rise to interesting host-guest and supramolecular phenomena. Specifically, dimerization of these metallocavitands yields capsules with vacant coordination and hydrogen-bonding sites accessible to encapsulated guests. Strong host-guest interactions explain the exceptionally high packing coefficient (0.80) observed for encapsulated N,N-dimethylformamide (DMF). The guest-accessible hydrogen-bonding sites arise from an unusual mu(3)-OH ligand bridging three cadmium ions. Thermodynamic and kinetic studies show that dimerization is an entropy-driven process with a highly associative mechanism. In DMF the exchange rate of peripheral cluster supporting carboxylate ligands is intrinsically linked to the rate of dimerization and these two seemingly different events have a common rate-determining step. Investigation of guest dynamics with solid-state (2)H NMR spectroscopy revealed 3-fold rotation of an encapsulated DMF molecule. These studies provide a solid understanding of the host-guest and dynamic properties of a new family of metallocavitands and may help in designing new supramolecular catalysts and materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.