Glioblastoma is a very aggressive and common brain cancer. Previous studies have shown that changes in the brain's redox biology interfere with behavioral patterns and DNA damage. The results of these studies, however, have been inconclusive. To evaluate the effects of a physical training program on behavioral aspects, redox and genomic stability parameters in animals exposed to an experimental model of GBM. Forty-seven male C57BL/6J mice aged sixty days were randomly selected and divided into two groups (GBM and sham/placebo surgery), which were subsequently divided into four groups: untrained sham (Sut, n = 10), untrained GBM (Gut, n = 15), trained sham (Str, n = 10), and trained GBM (Gtr, n = 12). The trained animals performed 3 sessions, followed by a rest day, of moderate aerobic exercise on a treadmill for four consecutive weeks, while the untrained animals were kept in boxes during the experimental period. Behavioral indicators were evaluated with open field and rota rod tests. After the last training session, the animals were euthanized and brain, liver, bone marrow, and blood were collected for analysis of redox and genomic instability markers. The results showed higher latency values were sustained by the exercise in Gtr. The elevated levels of total reactive oxygen species in the parietal tissue of Gut animals were reversed after physical training. The Gtr group had a lower tail intensity. Physical exercise is a promise as an adjunctive therapy for the management of GBM by modulating redox parameters in the parietal tissue and reduces the genomic instability in liver and blood.
Glioblastoma (GBM) is an aggressive, common brain cancer known to disrupt redox biology, affecting behavior and DNA integrity. Past research remains inconclusive. To further understand this, an investigation was conducted on physical training’s effects on behavior, redox balance, and genomic stability in GBMA models. Forty-seven male C57BL/6J mice, 60 days old, were divided into GBM and sham groups (n = 15, n = 10, respectively), which were further subdivided into trained (Str, Gtr; n = 10, n = 12) and untrained (Sut, Gut; n = 10, n = 15) subsets. The trained mice performed moderate aerobic exercises on a treadmill five to six times a week for a month while untrained mice remained in their enclosures. Behavior was evaluated using open-field and rotarod tests. Post training, the mice were euthanized and brain, liver, bone marrow, and blood samples were analyzed for redox and genomic instability markers. The results indicated increased latency values in the trained GBM (Gtr) group, suggesting a beneficial impact of exercise. Elevated reactive oxygen species in the parietal tissue of untrained GBM mice (Gut) were reduced post training. Moreover, Gtr mice exhibited lower tail intensity, indicating less genomic instability. Thus, exercise could serve as a promising supplemental GBM treatment, modulating redox parameters and reducing genomic instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.