Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Nanomedicine is a promising strategy for improving clinical outcomes for cancer therapies, by improving drug efficacy through enhanced delivery to disease sites. It is of importance for ultimate clinical success to consider the contributing factors to achieving this goal, such as size, chemistry, and functionality of nanoparticle delivery systems, and how these parameters influence tumor localization and uptake. This Topical Review will first discuss the evolution and progress of nanoparticles for cancer drug delivery and the current challenges that remain to be addressed. Strategies for overcoming the limitations of passive targeting through active targeting approaches, and the current state of such nanomedicines in the clinic will be highlighted. Finally, novel approaches toward the design of active targeted nanoparticles building on our growing understanding of nanobio interactions are considered, in order to shed light on future design considerations for accelerating clinical translation of nanomedicines.
Over the past few decades, advanced polymeric materials have gained popularity in the development of sustainable agricultural applications. Smart polymeric systems have extensively contributed to the agricultural industry by increasing the efficiency of pesticides, herbicides, and fertilizers by facilitating controlled release systems and, therefore, enabling lower doses to be used. Superabsorbent polymeric materials have been used as soil conditioners to control the impact of drought, whereas polycationic polymers have been utilized for plant bioengineering. These functions in the environment are complemented by applications within plants as part of the developing range of tools for genetically transforming plants in order to increase productivity and disease resistance. This Review will summarize and discuss the recent developments in the design and application of advanced polymeric systems for precision agriculture related applications. The design criteria of the polymers employed to date, such as polymer structure, as well as the properties of polymer nanoparticles including shape and size will be discussed, and the key findings in the related area will be highlighted. Finally, we will identify future directions for the exploration of functional polymers with the ultimate aim of advancing sustainable agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.