Summary
Stem-like glioma cells reside within a perivascular niche and display hallmark radiation resistance. Understanding of the mechanisms underlying these properties will be vital for the development of effective therapies. Here we show that the stem cell marker CD44 promotes cancer stem cell phenotypes and radiation resistance. In a mouse model of glioma, Cd44−/− and Cd44+/− animals showed improved survival compared to controls. The CD44 ligand Osteopontin shared a perivascular expression pattern with CD44 and promoted glioma stem cell-like phenotypes. These effects were mediated via the γ-secretase regulated intracellular domain of CD44, which promoted aggressive glioma growth in vivo and stem cell-like phenotypes via CBP/p300-dependent enhancement of HIF-2α activity. In human glioblastoma multiforme, expression of CD44 correlated with hypoxia-induced gene signatures and poor survival. Together, these data suggest that in the glioma perivascular niche, Osteopontin promotes stem cell-like properties and radiation resistance in adjacent tumor cells via activation of CD44 signaling.
Integration of PDX models as a preclinical platform for assessment of drug efficacy may allow a higher success-rate in critical end points of clinical benefit.
Prostate cancer is a leading and increasingly prevalent cause of cancer death in men. Whereas family history of disease is one of the strongest prostate cancer risk factors and suggests a hereditary component, the predisposing genetic factors remain unknown. We first showed that KLF6 is a tumor suppressor somatically inactivated in prostate cancer and since then, its functional loss has been further established in prostate cancer cell lines and other human cancers. Wild-type KLF6, but not patient-derived mutants, suppresses cell growth through p53-independent transactivation of p21. Here we show that a germline KLF6 single nucleotide polymorphism, confirmed in a tri-institutional study of 3,411 men, is significantly associated with an increased relative risk of prostate cancer in men, regardless of family history of disease. This prostate cancer-associated allele generates a novel functional SRp40 DNA binding site and increases transcription of three alternatively spliced KLF6 isoforms. The KLF6 variant proteins KLF6-SV1 and KLF6-SV2 are mislocalized to the cytoplasm, antagonize wtKLF6 function, leading to decreased p21 expression and increased cell growth, and are up-regulated in tumor versus normal prostatic tissue. Thus, these results are the first to identify a novel mechanism of selfencoded tumor suppressor gene inactivation and link a relatively common single nucleotide polymorphism to both regulation of alternative splicing and an increased risk in a major human cancer. (Cancer Res 2005; 65(4): 1213-22)
Gli signaling is critical for central nervous system development and is implicated in tumorigenesis. To monitor Gli signaling in gliomas in vivo, we created platelet-derived growth factor-induced gliomas in a Gli-luciferase reporter mouse. We find that Gli activation is found in gliomas and correlates with grade. In addition, we find that sonic hedgehog (SHH) is expressed in these tumors and also correlates with grade. We identify microvascular proliferation and pseudopalisades, elements that define high-grade gliomas as SHH-producing microenvironments. We describe two populations of SHH-producing stromal cells that reside in perivascular niche (PVN), namely low-cycling astrocytes and endothelial cells. Using the Ptc-LacZ knock-in mouse as a second Gli responsive reporter, we show B-galactosidase activity in the PVN and in some tumors diffusely throughout the tumor. Lastly, we observe that SHH is similarly expressed in human gliomas and note that an intact tumor microenvironment or neurosphere conditions in vitro are required for Gli activity. [Cancer Res 2008;68(7):2241-9]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.