Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range dissociation constants (K d spanning six decades) and unmatched sensitivity (picomolar K d 's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G, interleukin-2 with its monoclonal antibody, and calmodulin with calcium ion Ca 2+ , a small molecule inhibitor, the protein calcineurin, and the M13 peptide. The high sensitivity of back-scattering interferometry and small volumes of microfluidics allowed the entire calmodulin assay to be performed with 200 picomoles of solute.
Though membrane-associated proteins are ubiquitous within all living organisms and represent the majority of drug targets, a general method for direct, label-free measurement of ligand binding to native membranes has not been reported. Here we show backscattering interferometry (BSI) to be a viable technique for quantifying ligand-receptor binding affinities in a variety of membrane environments. By detecting minute changes in the refractive index of a solution, BSI allows binding interactions of proteins with their ligands to be measured at picomolar concentrations. Equilibrium binding constants in the micromolar to picomolar range were obtained for small- and large-molecule interactions in both synthetic- and cell-derived membranes without the use of labels or supporting substrates. The simple and low-cost hardware, high sensitivity, and label-free nature of BSI should make it readily applicable to the study of many membrane-associated proteins of biochemical and pharmacological interest.
Interaction/reaction assays have led to significant scientific discoveries in the biochemical, medical, and chemical disciplines. Several fundamental driving forces form the basis of intermolecular and intramolecular interactions in chemical and biochemical systems (London dispersion, hydrogen bonding, hydrophobic, and electrostatic), and in the past three decades the sophistication and power of techniques to interrogate these processes has developed at an unprecedented rate. In particular, label-free methods have flourished, such as NMR, mass spectrometry (MS), surface plasmon resonance (SPR), biolayer interferometry (BLI), and backscattering interferometry (BSI), which can facilitate assays without altering the participating components. The shortcoming of most refractive index (RI)-based label-free methods such as BLI and SPR is the requirement to tether one of the interaction entities to a sensor surface. This is not the case for BSI. Here, our hypothesis is that the signal origin for freesolution, label-free determinations can be attributed to conformation and hydration-induced changes in the solution RI. We propose a model for the free-solution response function (FreeSRF) and show that, when quality bound and unbound structural data are available, FreeSRF correlates well with the experiment (R 2 > 0.99, Spearman rank correlation coefficients >0.9) and the model is predictive within ∼15% of the experimental binding signal. It is also demonstrated that a simple mass-weighted dη/dC response function is the incorrect equation to determine that the change in RI is produced by binding or folding event in free solution.backscattering interferometry | assay methodology | molecular interactions | conformation change | hydration change C ontemporary assays enabling single-molecule detection (1,2) have accelerated the sequencing of the human genome (3) and facilitated imaging with extraordinary resolution without labels (4). To most closely approximate the natural state, an interaction assay methodology would interrogate the processes (reaction, molecular interaction, protein folding event, etc.) without perturbation. Label-free chemical and biochemical investigations (5, 6) transduce the desired signal without an exogenous label (fluorescent, radioactive, or otherwise) representing an essential step toward this goal. Many label-free methods require one of the interacting species to be either tethered or immobilized to the sensor surface, introducing a potential perturbation to the natural state of the species (7,8). However, back-scattering interferometry (BSI) is a free-solution label-free technique with the added benefit of sensitivity that rivals fluorescence (9). There are other techniques performed in free solution, such as MS (10, 11) and NMR (12,13) and the widely used isothermal titration calorimetry (ITC) (14, 15). As with NMR, ITC has many advantages, but exhibits modest sensitivity and often requires large sample quantities. Another increasingly popular free-solution approach is microscale thermophoresis (...
Carbohydrate-protein binding is important to many areas of biochemistry. Back-scattering interferometry (BSI) is shown here to be a convenient and sensitive method for obtaining quantitative information about the strengths and selectivities of such interactions. The surfaces of glass microfluidic channels were covalently modified with extravidin, to which biotinylated lectins were subsequently attached by incubation and washing. The binding of unmodified carbohydrates to the resulting avidin-immobilized lectins was monitored by BSI. Dose-response curves, generated within several minutes and highly reproducible in multiple wash/measure cycles, provided adsorption coefficients that showed mannose to bind to concanavalin A with 3.7 times greater affinity than glucose, in line with literature values. Galactose was found to bind selectively and with similar affinity to the lectin BS-1. The avidities of polyvalent sugar-coated virus particles for immobilized conA were far higher than monovalent glycans, with increases of 60-200 fold per glycan when arrayed on the exterior surface of cowpea mosaic virus or bacteriophage Qβ. Sugar-functionalized PAMAM dendrimers showed size-dependent adsorption consistent with the expected density of lectins on the surface. The sensitivity of BSI matches or exceeds that of surface plasmon resonance and quartz crystal microbalance techniques, and differs in its sensitivity to the number of binding events rather than changes in mass. Its operational simplicity, generality, and the near-native conditions under which the target binding proteins are immobilized make it an attractive method for the quantitative characterization of the binding functions of lectins and other proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.