In Caenorhabditis elegans, the primordial germ cells Z2 and Z3 are born during early embryogenesis and then held in a transcriptionally quiescent state where the genome is highly compacted. When hatched L1s feed, the germline genome decompacts, and RNAPII is abruptly and globally activated. A previously documented yet unexplained feature of germline genome activation in the worm is the appearance of numerous DNA breaks coincident with RNAPII transcription. Here, we show that the DNA breaks are induced by topoisomerase II and that they function to recruit the RUVB complex to chromosomes so that RUVB can decompact the chromatin. DNA break- and RUVB-mediated decompaction is required for zygotic genome activation. This work highlights the importance of global chromatin decompaction in the rapid induction of gene expression and shows that one way cells achieve global decompaction is through programmed DNA breaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.