CYP2D6 genotype is increasingly being integrated into practice to guide prescribing of certain medications. The CYP2D6 drug metabolizing enzyme is susceptible to inhibition by concomitant drugs, which can lead to a clinical phenotype that is different from the genotype‐based phenotype, a process referred to as phenoconversion. Phenoconversion is highly prevalent but not widely integrated into practice because of either limited experience on how to integrate or lack of knowledge that it has occurred. We built a calculator tool to help clinicians integrate a standardized method of assessing CYP2D6 phenoconversion into practice. During tool‐building, we identified several clinical factors that need to be considered when implementing CYP2D6 phenoconversion into clinical practice. This tutorial shares the steps that the University of Florida Health Precision Medicine Program took to build the calculator tool and identified clinical factors to consider when implementing CYP2D6 phenoconversion in clinical practice.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with development of acute hemolytic anemia in the setting of oxidative stress, which can be caused by medication exposure. Regulatory agencies worldwide warn against the use of certain medications in persons with G6PD deficiency, but in many cases, this information is conflicting, and the clinical evidence is sparse. This guideline provides information on using G6PD genotype as part of the diagnosis of G6PD deficiency and classifies medications that have been previously implicated as unsafe in individuals with G6PD deficiency by one or more sources. We classify these medications as high, medium, or low to no risk based on a systematic review of the published evidence of the gene-drug associations and regulatory warnings. In patients with G6PD deficiency, high-risk medications should be avoided, medium-risk medications should be used with caution, and low-to-no risk medications can be used with standard precautions, without regard to G6PD phenotype. This new document replaces the prior Clinical Pharmacogenetics Implementation Consortium guideline for rasburicase therapy in the context of G6PD genotype (updates at: www.cpicp gx.org).
Pharmacogenetic testing (PGT) is increasingly being used as a tool to guide clinical decisions. This article describes the development of an outpatient, pharmacist-led, pharmacogenetics consult clinic within internal medicine, its workflow, and early results, along with successes and challenges. A pharmacogenetics-trained pharmacist encouraged primary care physicians (PCPs) to refer patients who were experiencing side effects/ineffectiveness from certain antidepressants, opioids, and/or proton pump inhibitors. In clinic, the pharmacist confirmed the need for and ordered CYP2C19 and/or CYP2D6 testing, provided evidence-based pharmacogenetic recommendations to PCPs, and educated PCPs and patients on the results. Operational and clinical metrics were analyzed. In two years, 91 referred patients were seen in clinic (mean age 57, 67% women, 91% European-American). Of patients who received PGT, 77% had at least one CYP2C19 and/or CYP2D6 phenotype that would make conventional prescribing unfavorable. Recommendations suggested that physicians change a medication/dose for 59% of patients; excluding two patients lost to follow-up, 87% of recommendations were accepted. Challenges included PGT reimbursement and referral maintenance. High frequency of actionable results suggests physician education on who to refer was successful and illustrates the potential to reduce trial-and-error prescribing. High recommendation acceptance rate demonstrates the pharmacist’s effectiveness in providing genotype-guided recommendations, emphasizing a successful pharmacist–physician collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.