A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive, and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell-types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species including humans. Here we describe a novel recombinant adeno-associated virus (rAAV) that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABA-ergic function in virtually any vertebrate species.
We have used site-directed mutagenesis of amino acids located within the S1 and S2 ligand binding domains of the NR2A N-methyl-D-aspartate (NMDA) receptor subunit to explore the nature of ligand binding. Wild-type or mutated NR1/NR2A NMDA receptors were expressed in Xenopus laevis oocytes and studied using two electrode voltage clamp. We investigated the effects of mutations in the S1 and S2 regions on the potencies of the agonists L-glutamate, L-aspartate, (R,S)-tetrazol-5yl-glycine, and NMDA. Mutation of each of the corresponding residues found in the NR2A receptor subunit, suggested to be contact residues in the GluR2 ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, caused a rightward shift in the concentration-response curve for each agonist examined. None of the mutations examined altered the efficacy of glutamate as assessed by methanethiosulfonate ethylammonium potentiation of agonist-evoked currents. In addition, none of the mutations altered the potency of glycine. Homology modeling and molecular dynamics were used to evaluate molecular details of ligand binding of both wild-type and mutant receptors, as well as to explore potential explanations for agonist selectivity between glutamate receptor subtypes. The modeling studies support our interpretation of the mutagenesis data and indicate a similar binding strategy for L-glutamate and NMDA when they occupy the binding site in NMDA receptors, as has been proposed for glutamate binding to the GluR2 AMPA receptor subunit. Furthermore, we offer an explanation as to why "charge conserving" mutations of two residues in the binding pocket result in nonfunctional receptor channels and suggest a contributing molecular determinant for why NMDA is not an agonist at AMPA receptors.The NMDA receptor channel is thought to be formed from the coassembly of two NR1 subunits and two NR2 subunits in a dimer of dimers configuration (Schorge and Colquhoun, 2003). NMDA receptors are unique among ligand-gated ion channels in that the binding of two different ligands is required for the activation of the receptor channel complex. Glycine, a coagonist, binds to residues located in the NR1 subunits, whereas glutamate binds to residues located in NR2 subunits (for review, see Erreger et al., 2004) of which there are four types (termed NR2A-D or ⑀ 1-4) and which are the major determinants of the pharmacological and biophysical properties of these receptors (Monyer et al., 1992(Monyer et al., , 1994Vicini et al., 1998;Wyllie et al., 1998). Ionotropic glutamate receptor subunits are comprised of distinct functional regions-an amino terminal domain, a ligand binding domain, a membrane-associated region, and an intracellular carboxyl-terminal domain (Fig. 1A). The ligand binding domain is thought to form a hinged clamshell-like structure (Armstrong et al., 1998) and is comprised of a region preceding the first membrane spanning domain (termed S1) and a region between the second and third membrane spanning domains (termed S2). In NR2 NMDA receptor s...
Summary Functional circuits in the visual cortex require the coordinated activity of excitatory and inhibitory neurons. Molecular genetic approaches in the mouse have led to the ‘local nonspecific pooling principle’ of inhibitory connectivity, in which inhibitory neurons are untuned for stimulus features due to the random pooling of local inputs. However, it remains unclear whether this principle generalizes to species with a columnar organization of feature selectivity such as carnivores, primates, and humans. Here we use virally-mediated GABAergic-specific GCaMP6f expression to demonstrate that inhibitory neurons in ferret visual cortex respond robustly and selectively to oriented stimuli. We find that the tuning of inhibitory neurons is inconsistent with the local non-specific pooling of excitatory inputs, and that inhibitory neurons exhibit orientation-specific noise correlations with local and distant excitatory neurons. These findings challenge the generality of the non-specific pooling principle for inhibitory neurons, suggesting different rules for functional excitatory-inhibitory interactions in non-murine species.
Dopamine is hypothesized to convey error information in reinforcement learning tasks with explicit appetitive or aversive cues. However, during motor skill learning feedback signals arise from an animal’s evaluation of sensory feedback resulting from its own behavior, rather than any external reward or punishment. It has previously been shown that intact dopaminergic signaling from the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) complex is necessary for vocal learning when songbirds modify their vocalizations to avoid hearing distorted auditory feedback (playbacks of white noise). However, it remains unclear whether dopaminergic signaling underlies vocal learning in response to more naturalistic errors (pitch-shifted feedback delivered via headphones). We used male Bengalese finches ( Lonchura striata var. domestica ) to test the hypothesis that the necessity of dopamine signaling is shared between the two types of learning. We combined 6-hydroxydopamine (6-OHDA) lesions of dopaminergic terminals within Area X, a basal ganglia nucleus critical for song learning, with a headphones learning paradigm that shifted the pitch of auditory feedback and compared their learning to that of unlesioned controls. We found that 6-OHDA lesions affected song behavior in two ways. First, over a period of days lesioned birds systematically lowered their pitch regardless of the presence or absence of auditory errors. Second, 6-OHDA lesioned birds also displayed severe deficits in sensorimotor learning in response to pitch-shifted feedback. Our results suggest roles for dopamine in both motor production and auditory error processing, and a shared mechanism underlying vocal learning in response to both distorted and pitch-shifted auditory feedback.
AMPA receptors are the principal mediators of excitatory synaptic transmission in the mammalian central nervous system. The subunit composition of these tetrameric receptors helps to define their functional properties, and may also influence the synaptic trafficking implicated in long-term synaptic plasticity. However, the organization of AMPAR subunits within the synapse remains unclear. Here, we use postembedding immunogold electron microscopy to study the synaptic organization of AMPAR subunits in stratum radiatum of CA1 hippocampus in the adult rat. We find that GluA1 concentrates away from the center of the synapse, extending at least 25 nm beyond the synaptic specialization; in contrast, GluA3 is uniformly distributed along the synapse, and seldom extends beyond its lateral border. The fraction of extrasynaptic GluA1 is markedly higher in small than in large synapses; no such effect is seen for GluA3. These observations imply that different kinds of AMPARs are differently trafficked to and/or anchored at the synapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.