Exosomes are membranous nanovesicles released by most cell types from multi-vesicular endosomes. They are speculated to transfer molecules to neighboring or distant cells and modulate many physiological and pathological procedures. Exosomes released from the gastrointestinal epithelium to the basolateral side have been implicated in antigen presentation. Here, we report that luminal release of exosomes from the biliary and intestinal epithelium is increased following infection by the protozoan parasite Cryptosporidium parvum. Release of exosomes involves activation of TLR4/IKK2 signaling through promoting the SNAP23-associated vesicular exocytotic process. Downregulation of let-7 family miRNAs by activation of TLR4 signaling increases SNAP23 expression, coordinating exosome release in response to C. parvum infection. Intriguingly, exosomes carry antimicrobial peptides of epithelial cell origin, including cathelicidin-37 and beta-defensin 2. Activation of TLR4 signaling enhances exosomal shuttle of epithelial antimicrobial peptides. Exposure of C. parvum sporozoites to released exosomes decreases their viability and infectivity both in vitro and ex vivo. Direct binding to the C. parvum sporozoite surface is required for the anti-C. parvum activity of released exosomes. Biliary epithelial cells also increase exosomal release and display exosome-associated anti-C. parvum activity following LPS stimulation. Our data indicate that TLR4 signaling regulates luminal exosome release and shuttling of antimicrobial peptides from the gastrointestinal epithelium, revealing a new arm of mucosal immunity relevant to antimicrobial defense.
ObjectiveWe sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems.DesignProspective surveillance and system-wide implementation of NGS.Setting288-hospital healthcare network.MethodsAll phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed.ResultsFrom 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones.ConclusionAlthough NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed.
Klebsiella pneumoniaecarbapenemase (KPC)-producing organisms are therapeutically and diagnostically challenging. It is possible thatblaKPCgene expression plays a role in the variability observed in clinical susceptibility testing.blaKPCtransformants together with 10 clinical isolates representing four genera were evaluated forblaKPCcopy number and gene expression and correlated with β-lactam MIC data. The data suggest that mechanisms other than gene copy number and expression ofblaKPCcontribute to variability in susceptibility when testing KPC-producing isolates.
Retinoic acid receptor (RAR) has been implicated in pathological stimuli-induced cardiac remodeling. To determine whether the impairment of RARα signaling directly contributes to the development of heart dysfunction and the involved mechanisms, tamoxifen-induced myocardial specific RARα deletion (RARαKO) mice were utilized. Echocardiographic and cardiac catheterization studies showed significant diastolic dysfunction after 16 wks of gene deletion. However, no significant differences were observed in left ventricular ejection fraction (LVEF), between RARαKO and wild type (WT) control mice. DHE staining showed increased intracellular reactive oxygen species (ROS) generation in the hearts of RARαKO mice. Significantly increased NOX2 (NADPH oxidase 2) and NOX4 levels and decreased SOD1 and SOD2 levels were observed in RARαKO mouse hearts, which were rescued by overexpression of RARα in cardiomyocytes. Decreased SERCA2a expression and phosphorylation of phospholamban (PLB), along with decreased phosphorylation of Akt and Ca2+/calmodulin-dependent protein kinase II δ (CaMKII δ) was observed in RARαKO mouse hearts. Ca2+ reuptake and cardiomyocyte relaxation were delayed by RARα deletion. Overexpression of RARα or inhibition of ROS generation or NOX activation prevented RARα deletion-induced decrease in SERCA2a expression/activation and delayed Ca2+ reuptake. Moreover, the gene and protein expression of RARα was significantly decreased in aged or metabolic stressed mouse hearts. RARα deletion accelerated the development of diastolic dysfunction in streptozotocin (STZ)-induced type 1 diabetic mice or in high fat diet fed mice. In conclusion, myocardial RARα deletion promoted diastolic dysfunction, with a relative preserved LVEF. Increased oxidative stress have an important role in the decreased expression/activation of SERCA2a and Ca2+ mishandling in RARαKO mice, which are major contributing factors in the development of diastolic dysfunction. These data suggest that impairment of cardiac RARα signaling may be a novel mechanism that is directly linked to pathological stimuli-induced diastolic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.