We present a lightweight Coq framework for optimizing tensor kernels written in a pure, functional array language. Optimizations rely on user scheduling using series of verified, semantics-preserving rewrites. Unusually for compilation targeting imperative code with arrays and nested loops, all rewrites are source-to-source within a purely functional language. Our language comprises a set of core constructs for expressing high-level computation detail and a set of what we call reshape operators, which can be derived from core constructs but trigger low-level decisions about storage patterns and ordering. We demonstrate that not only is this system capable of deriving the optimizations of existing state-of-the-art languages like Halide and generating comparably performant code, it is also able to schedule a family of useful program transformations beyond what is reachable in Halide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.