The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960’s, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.
The Risso's dolphin, Grampus griseus, is a deep‐sea cetacean with a predominantly teuthophagous diet. Its distribution in the northwest Mediterranean is generally in deeper waters, but there is little information on diet or feeding areas. To extend knowledge of the diet of G. griseus, the stomach contents of six stranded Risso's dolphins in the Mediterranean Sea were analyzed. A total of 578 cephalopod beaks (166 uppers and 392 lowers) were found, identified as 386 individuals from 19 different species of Coleoidea cephalopods, one Sepiolida, eight Octopoda, and ten species belonging to the Order Oegopsida. This adds six species of cephalopods to those previously recorded in the Mediterranean Sea: Rondeletiola minor, Eledone moschata, Scaeurgus unicirrhus, Bathypolypus sponsalis, Pteroctopus tetracirrhus and Taonius pavo. In this study the most abundant prey family was Histioteuthidae. In addition, based on the available literature, the diet of 39 Risso's dolphins was reviewed in Mediterranean waters. The abundance of cephalopod species in the diet of these specimens was compared according to genus, geographical area, season, and age. The habitat of the prey of G. griseus was reviewed, suggesting a teuthophagous diet in this area. This study helps to identify both the prey species and the areas where prey are available in the northwest Mediterranean, which are key factors in establishing the limits and regulations of the “Northwest Mediterranean Sea, Slope and Canyon IMMA System” (Important Areas for Marine Mammals) proposed by the Working Group on Marine Mammal Protected Areas (MMPATF ‐ IUCN).
An extensive review of cephalopod fauna in the Central and North Atlantic coast of Africa was performed based on material collected during 10 research cruises in these waters. In the Canary Current Large Marine Ecosystem (CCLME) area, a total of 378,377 cephalopod specimens was collected from 1247 bottom trawl stations. Of those specimens, 300 were sampled for subsequent identification in the laboratory and found to belong to 65 different species and 23 families. After an exhaustive review of the existing literature on the cephalopods and new data obtained from the surveys, an updated checklist of 138 species was generated for the CCLME area. Our knowledge of the known geographic distribution ranges of several species has been expanded: Muusoctopus januarii has been sighted from Guinea–Bissau waters, passing through Western Sahara, to Morocco waters for the first time; Lepidoteuthis grimaldii and Octopus salutii have been sighted off Morocco waters for the first time; Austrorossia mastigophora, Abralia (Heterabralia) siedleckyi, Abralia (Pygmabralia) redfieldi and Sepiola atlantica have been cited off Western Sahara waters for the first time; Magnoteuthis magna, Abralia (Asteroteuthis) veranyi and Octopoteuthis megaptera have been sighted off Moroccan and Western Sahara waters for the first time; Ancistroteuthis lichtensteinii, Opisthoteuthis grimaldii, Onykia robsoni, Muusoctopus levis and Bathypolypus valdiviae have been cited in the Guinea–Bissau coast for the first time; the northern geographic limit of Bathypolypus ergasticus has been expanded to Morocco, Western Sahara and Mauritania and southward to Guinea–Bissau waters. The presence of Muusoctopus johnsonianus in Senegalese waters has been reported for the first time. A Chtenopteryx sicula specimen was reported in Western Sahara waters. A specimen belonging to the poorly known Cirrothauma murrayi species was found in South Moroccan waters. Amphitretus pelagicus, a probably cosmopolitan species, has been reported in the Western Sahara and Guinea–Bissau waters. Some species that were previously recorded in the area, Sepia angulata, Sepia hieronis, Heteroteuthis dagamensis, Helicocranchia joubini and Tremoctopus gelatus, were removed from the final checklist and considered to be not present in the CCLME area. Cycloteuthis akimushkini was substituted with Cycloteuthis sirventi, its senior synonym, in the final checklist. Similarly, Mastigoteuthis flammea and Mastigoteuthis grimaldii were substituted with Mastigoteuthis agassizii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.