Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites—indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change.
This paper summarizes the importance of climate on tropical wetlands. Regional hydrology and carbon dynamics in many of these wetlands could shift with dramatic changes in these major carbon storages if the inter-tropical convergence zone (ITCZ) were to change in its annual patterns. The importance of seasonal pulsing hydrology on many tropical wetlands, which can be caused by watershed activities, orographic features, or monsoonal pulses from the ITCZ, is illustrated by both annual and 30-year patterns of hydrology in the Okavango Delta in southern Africa. Current studies on carbon biogeochemistry in Central America are attempting to determine the rates of carbon sequestration in tropical wetlands compared to temperate wetlands and the effects of hydrologic conditions on methane generation in these wetlands. Using the same field and lab techniques, we estimated that a humid tropical wetland in Costa Rica accumulated 255 g C m -2 year -1 in the past 42 years, 80% more than a similar temperate wetland in Ohio that accumulated 142 g C m -2 year -1 over the same period. Methane emissions averaged 1,080 mg-C m -2 day -1 in a seasonally pulsed wetland in western Costa Rica, a rate higher than methane emission rates measured over the same period from humid tropic wetlands in eastern Costa Rica (120-278 mg-C m -2 day -1 ). Tropical wetlands are often tuned to seasonal pulses of water caused by the seasonal movement of the ITCZ and are the most likely to be have higher fire frequency and changed methane emissions and carbon oxidation if the ITCZ were to change even slightly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.