Atmospheric carbon particles originate from natural sources and from human activity. The processes that lead to their formation are varied and include fossil fuel combustion, biomass burning, and mechanical stress and wear of carbonaceous materials. In this review, we examine recent work on the structure and composition of carbon aerosol particles, and we describe how they react with the atmospherically abundant gases ozone, oxygen, sulfur dioxide, nitric acid, and nitrogen oxides. The study of carbon particles in the laboratory has shown that chemical reactivity depends strongly on the type of carbon used and on experimental conditions such as temperature and humidity. The variability in the results demonstrates the difficulty in extrapolating laboratory results to atmospheric conditions and in explaining the role of carbon particles in processes such as global warming and environmental chemical cycling.
The kinetics of the reaction between soot nanoparticles and molecular oxygen were studied by tandem differential mobility analysis (TDMA). The particles were extracted from the tip of an ethene diffusion flame. Reactions were studied at atmospheric pressure in mixtures of nitrogen and oxygen. The studies involved particles of an initial mobility diameter of 30 nm over broad ranges of temperature (500-1100 degrees C) and oxygen volume fraction (0-1). Measurements as a function of oxygen partial pressure establish that the oxidation kinetics are not first-order in oxygen volume fraction (F(O2)). Rather, the oxidation rate increases rapidly and linearly with F(O2) between 0 and 0.05 and then more slowly but still linearly between 0.05 and 1. Temperature dependent measurements are consistent with a reaction pathway involving two kinetically distinguishable oxidation sites which interconvert thermally and through oxidation. Results and conclusions are compared to those of earlier studies on the oxidation of soot.
The photodegradation of imazethapyr, 5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydroimidazol-1H-3-yl)nicotinic acid, has been investigated in phosphate buffers and in buffered solutions containing natural organic matter (NOM). Imazethapyr degrades most quickly under 253.7 nm light and at pH values >4. The presence of NOM in solution caused the reaction rate constants for the photodegradation to decrease, with higher concentrations of NOM having a larger effect. Calculations suggest light screening is the major effect of the NOM. Seven photoproducts have been identified, and a photodegradation mechanism is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.