Aims/hypothesis Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Methods Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis.Results We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate-but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipidinduced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Conclusions/interpretation Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.
Aims/hypothesis Saturated fatty acids augment endoplasmic reticulum (ER) stress in pancreatic beta cells and this is implicated in the loss of beta cell mass that accompanies type 2 diabetes. However, the mechanisms underlying the induction of ER stress are unclear. Our aim was to establish whether saturated fatty acids cause defects in ER-to-Golgi protein trafficking, which may thereby contribute to ER stress via protein overload. Methods Cells of the mouse insulinoma cell line MIN6 were transfected with temperature-sensitive vesicular stomatitis virus G protein (VSVG) tagged with green fluorescent protein to quantify the rate of ER-to-Golgi protein trafficking. I14 antibody, which detects only correctly folded VSVG, was employed to probe the folding environment of the ER. ER stress markers were monitored by western blotting.Results Pretreatment with palmitate, but not oleate, significantly reduced the rate of ER-to-Golgi protein trafficking assessed using VSVG. This was not secondary to ER stress, since thapsigargin, which compromises chaperone function by depletion of ER calcium, markedly inhibited VSVG folding and promoted strong ER stress but only slightly reduced protein trafficking. Blockade of ER-to-Golgi protein trafficking with brefeldin A (BFA) was sufficient to trigger ER stress, but neither BFA nor palmitate compromised VSVG folding. Conclusions/interpretation Reductions in ER-to-Golgi protein trafficking potentially contribute to ER stress during lipoapoptosis. In this case ER stress would be triggered by protein overload, rather than a disruption of the proteinfolding capacity of the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.