The Advection-Diffusion Multilayer Method (ADMM) emerged to address the solution of advection-diffusion equations with variable coefficients in the context of pollutant dispersion modeling. The ADMM is based on the piecewise-constant approximation of the variable coefficients and the application of the Laplace transform. Applications of ADMM in other areas are potentially relevant for modeling the behavior of heterogeneous media. However, if such heterogeneity is characterized by rapidly oscillating coefficients, the direct application of the ADMM would increase the computational effort needed, as it would require a very fine discretization of the domain. In order to overcome such a drawback, in this contribution, an alternative approach combining the ADMM with the Asymptotic Homogenization Method (AHM) is presented. The ADMM-AHM integrated approach is compared to the direct application of the ADMM in order to assess the accuracy of the estimations of the solution of the original problem, and the computational efficiency.
Em geral, o cálculo da transformada de Laplace inversa diretamente da definição, dada pela integral de Bromwich, é muito difícil. Como alternativa são utilizados métodos numéricos de inversão. Neste artigo, estudamos a precisão e o tempo de máquina dos métodos de Talbot Fixo, Dubner-Abate, Durbin, Gaver-Stehfest e Euler. Especificamente, realizamos diversos experimentos computacionais a partir da implementação própria destes métodos. Ainda, o desempenho é avaliado para funções teste que ocorrem usualmente como parte das soluções de equações diferenciais ordinárias. Os resultados da experimentação computacional permitem concluir que o método de Talbot Fixo apresenta o melhor desempenho.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.