Heterologous secondary infections are at increased risk of developing dengue hemorrhagic fever (DHF) because of antibody-dependent enhancement (ADE). IgG subclasses can fix and activate complement and bind to Fcɣ receptors. These factors may also play an important role in the development of ADE and thus in the pathogenesis of DHF. The aim of this study was to analyze the indices of anti-dengue IgG subclasses in adult patients with febrile and hemorrhagic dengue in the acute phase. In 2013, 129 patients with dengue fever (DF) and 57 with DHF in Veracruz, Mexico were recruited for this study and anti-dengue IgM and IgG determined by capture ELISA. Anti-dengue IgG subclasses were detected by indirect ELISA. Anti-dengue IgG2 and IgG3 subclasses were detected in patients with dengue. IgG1 increased significantly in the sera of patients with both primary and secondary infections and DHF, but was higher in patients with secondary infections. The IgG4 subclass index was significantly higher in the sera of patients with DHF than in that of those with DF, who were in the early and late acute phase of both primary and secondary infection. In conclusion, indices of subclasses IgG1 and IgG4 were higher in patients with DHF.
Dengue manifestations range from a mild form, dengue fever (DF), to more severe forms such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The ability of the host to present one of these clinical forms could be related to polymorphisms located in genes of the Toll-like receptors (TLRs) which activate the pro-inflammatory response. Therefore, the genotyping of single nucleotide genetic polymorphisms (SNPs) in TLR3 (rs3775291 and rs6552950), TLR4 (rs2737190, rs10759932, rs4986790, rs4986791, rs11536865, and rs10983755), TLR7 (rs179008 and rs3853839), and TLR8 (rs3764880, rs5741883, rs4830805, and rs1548731) was carried out in non-genetically related DHF patients, DF patients, and general population (GP) subjects. The SNPs were analyzed by real-time PCR by genotyping assays from Applied Biosystems®. The codominance model showed that dengue patients had a lower probability of presenting the TLR4-rs2737190-G/G genotype (odds ratio (OR) (95% CI) = 0.34 (0.14–0.8), p = 0.038). Dengue patients showed a lower probability of presenting TLR4-rs11536865-G/C genotype (OR (95% CI) = 0.19 (0.05–0.73), p = 0.0092) and had a high probability of presenting the TACG haplotype, but lower probability of presenting the TGCG haplotype in the TLR4 compared to GP individuals (OR (95% CI) = 0.55 (0.35–0.86), p = 0.0084). In conclusion, the TLR4-rs2737190-G/G and TLR4-rs11536865-G/C genotypes and TGCG haplotype were associated with protection from dengue.
The wide range of symptoms of the coronavirus disease 2019 (COVID-19) makes it challenging to predict the disease evolution using a single parameter. Therefore, to describe the pathophysiological response to SARS-CoV-2 infection in hospitalized patients with severe COVID-19, we compared according to survival or death, the sociodemographic and clinical characteristics, the biochemical and immunological attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra from saliva samples and their correlation with chemometric findings. Herein, we demonstrate that ATR-FTIR spectroscopy allows the description of the events related to cell damage, such as lipids biogenesis and the secondary structure of proteins associated with lactate dehydrogenase and albumin levels. Moreover, humoral (IgM) and cellular (IFN-γ, TNF-α, IL-10, and IL-6) responses were also increased in patients who died from COVID-19.
Background Polyamines are involved in several cellular processes and inhibiting their synthesis affects chikungunya virus (CHIKV) replication and translation, and, therefore, reduces the quantity of infectious viral particles produced. In this study, we evaluated the inhibition of CHIKV replication by N-ω-chloroacetyl-L-ornithine (NCAO), a competitive inhibitor of ornithine decarboxylase, an enzyme which is key in the biosynthesis of polyamines (PAs). Methods The cytotoxicity of NCAO was evaluated by MTT in cell culture. The inhibitory effect of CHIKV replication by NCAO was evaluated in Vero and C6/36 cells. The intracellular polyamines were quantified by HPLC in CHIKV-infected cells. We evaluated the yield of CHIKV in titres via the addition of PAs in Vero, C6/36 cells and human fibroblast BJ treated with NCAO. Results We found that NCAO inhibits the replication of CHIKV in Vero and C6/36 cells in a dose-dependent manner, causing a decrease in the PFU/mL of at least 4 logarithms ( p < 0.01) in both cell lines. Viral yields were restored by the addition of exogenous polyamines, mainly putrescine. The HPLC analyses showed that NCAO decreases the content of intracellular PAs, even though it is predominantly spermidines and spermines which are present in infected cells. Inhibition of CHIKV replication was observed in human fibroblast BJ treated with 100 μM NCAO 24 h before and 48 h after the infection at a MOI 1. Conclusions NCAO inhibits CHIKV replication by depleting the intracellular polyamines in Vero, C6/36 cells and human fibroblast BJ, suggesting that this compound is a possible antiviral agent for CHIKV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.