Ants, an ecologically successful and numerically dominant group of animals, play key ecological roles as soil engineers, predators, nutrient recyclers, and regulators of plant growth and reproduction in most terrestrial ecosystems. Further, ants are widely used as bioindicators of the ecological impact of land use. We gathered information of ant species in the Atlantic Forest of South America. The ATLANTIC ANTS data set, which is part of the ATLANTIC SERIES data papers, is a compilation of ant records from collections (18,713 records), unpublished data (29,651 records), and published sources (106,910 records; 1,059 references), including papers, theses, dissertations, and book chapters published from 1886 to 2020. In total, the data set contains 153,818 ant records from 7,636 study locations in the Atlantic Forest, representing 10 subfamilies, 99 genera, 1,114 ant species identified with updated taxonomic certainty, and 2,235 morphospecies codes. Our data set reflects the heterogeneity in ant records, which include ants sampled at the beginning of the taxonomic history of myrmecology (the 19th and 20th centuries) and more recent ant surveys designed to address specific questions in ecology and biology. The data set can be used by researchers to develop strategies to deal with different macroecological and region‐wide questions, focusing on assemblages, species occurrences, and distribution patterns. Furthermore, the data can be used to assess the consequences of changes in land use in the Atlantic Forest on different ecological processes. No copyright restrictions apply to the use of this data set, but we request that authors cite this data paper when using these data in publications or teaching events.
The taxonomy of the giant ants of the genus Dinoponera is revised based on female and male morphology. Eight species are recognized. Dinoponera nicinha sp. nov., from Amazonas and Rondônia, Brazil, is described and D. grandis (Guérin-Méneville, 1838) is revived. The species D. australis Emery, 1901 and D. snellingi Lenhart, Dash & Mackay, 2013, plus the subspecies D. australis bucki Borgmeier, 1937 and D. australis nigricolor Borgmeier, 1937 are synonymized under D. grandis sp. rev. An unnamed and unidentified male is reported. In general, male morphology has greater and more discrete variation than in females, but they are scarce in museum collections. Species distributions are updated and illustrated, the genus ranging from southern Colombia to northern Argentina, with no reliable records from the Guiana Shield and all nominal species occurring in Brazil. Intraspecific variation and natural history are discussed. New illustrated identification keys are provided for both sexes. Future studies should address the collection of fresh specimens for molecular work and to assess the conservation status of several species and populations.
Fire is a frequent agent of disturbance in tropical savannas (e.g., Brazilian Cerrado), but relatively few studies have analyzed how the arthropod community responds to fire disturbance. Following the incursion of an accidental fire into a Cerrado fragment in Central Brazil, we investigated whether the arthropod community is structured by abiotic (climate or fire) or biotic (succession) factors. Our study commenced one week after fire and during the six months afterward. We found 22 arthropod orders, of which Diptera, Hymenoptera, Hemiptera, Blattaria and Coleoptera were the most representative. More than 40% of the arthropod abundance was recorded 40 days after the fire event. The overall arthropod abundance and richness fluctuated in the six months following the fire and does not seem to be related to climatic variables. Temporal beta diversity was explained by a reduction in richness differences along the intervals of time, but the community recovery needs to be treated with caution. The increase in replacement in the last intervals in relation to the fire event indicates that biotic interactions may occur with the arrival of late colonizers and suggest that arthropod communities need a long time to be restructured. These results indicate that the processes of restructuring of the arthropod communities after human-induced fire events are temporally complex, involving loss, gain and taxon replacement, but long-term studies are still needed to understand the dynamics of communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.