Histone H3 lysine 4 trimethylation (H3K4me3) is a major hallmark of promoter-proximal histones at transcribed genes. Here, we report that a previously uncharacterized Drosophila H3K4 methyltransferase, dSet1, and not the other putative histone H3K4 methyltransferases (Trithorax; Trithorax-related protein), is predominantly responsible for histone H3K4 trimethylation. Functional and proteomics studies reveal that dSet1 is a component of a conserved H3K4 trimethyltransferase complex and polytene staining and live cell imaging assays show widespread association of dSet1 with transcriptionally active genes. dSet1 is present at the promoter region of all tested genes, including activated Hsp70 and Hsp26 heat shock genes and is required for optimal mRNA accumulation from the tested genes. In the case of Hsp70, the mRNA production defect in dSet1 RNAi-treated cells is accompanied by retention of Pol II at promoters. Our data suggest that dSet1-dependent H3K4me3 is responsible for the generation of a chromatin structure at active promoters that ensures optimal Pol II release into productive elongation.
Histone H3 lysine 4 trimethylation (H3K4me3) and the acetylated H2A variant, H2A. Z/v (H2Avac), are enriched at promoters of highly transcribed loci including the stress response genes. Using the inducible Drosophila hsp70 loci as a model, we study here the roles of the dSet1 and dTip60 complexes in the generation of these two chromatin modifications. We find that Heat Shock Factor recruits the dTip60 complex to the hsp70 loci in cells treated with salicylate, which triggers chromatin remodeling at these loci without transcription activation. Under these conditions, H2Avac or H3K4me3 are not enriched at the hsp70 promoter. By contrast, heat shock-induced hsp70 transcription induces dSet1-dependent H3K4me3 and H2Avac deposition by the dTip60 complex. The loss of dSet1 or dTip60 abolishes H2Avac incorporation, impairs Pol II release from the hsp70 promoter, and causes a stalling of mRNA production during phases of transcription maximization. Biochemical assays confirm that nucleosomal H3K4me3 stimulates the histone acetyltransferase and H2Av exchange activities of dTip60 complexes. H2Avac contributes to nucleosome destabilization at promoters, and H3K4me3 restricts its incorporation to phases of acute transcription. The process uncouples cotranscriptional chromatin remodeling by dTip60 complexes from their role in the activation of PARP, which is responsible for the removal of transcription-incompatible or damaged chromatin during the initial stress response. The control of the multifunctional dTip60 complex by H3K4me3 ensures optimal stress response and cell survival by mediating the rapid maximization of hsp70 expression. Furthermore, this mechanism prevents the accumulation of epigenetic noise caused by random complex-nucleosome collisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.