Corn is one of the largest cereal crops worldwide and plays an important role in the U.S. economy. The pet food market is growing every year, and although corn is well utilized by dogs, some marketing claims have attributed a negative image to this cereal. Thus, the objective of this work was to review the literature regarding corn and its co-products, as well as describe the processing of these ingredients as they pertain to pet foods. Corn is well digested by both dogs and cats and provides nutrients. The processing of corn generates co-products such as corn gluten meal and distillers dried grains with solubles that retain quality protein, and fibrous components that dilute dietary energy. Further, corn has much functionality in extrusion processing. It may yield resistant starch under certain processing conditions, promoting colonic health. Carotenoids in corn may enhance immune support in companion animals if concentrated. Mycotoxin contamination in grains represent a health hazard but are well controlled by safety measures. Genetically modified (GM) corn is still controversial regarding its long-term potential for mutagenicity or carcinogenicity, thus more long-term studies are needed. In conclusion, the negative perception by some in the pet food market may not be warranted in pet foods using corn and its co-products.
Significant improvement in thiamin retention of canned cat food has not been achieved by altering processing conditions. Some ingredients, such as yeasts, may supply thiamin able to withstand thermal processing. Therefore, the study objective was to evaluate yeast ingredients as thiamin sources for canned cat food. Six yeast ingredients were screened for thiamin content, and values ranged from 9.9–4,283.8 mg/kg dry matter basis (DMB). Treatments for thermal processing were arranged as a 2×4 factorial with 2 levels of vitamin premix (with or without) and 4 yeast ingredients (NY = none and LBV, BY, or EA from the ingredient screening). Replicates (n = 3) were processed in a horizontal still retort to an average lethality of 79.23 minutes. Thiamin degradation was analyzed as a mixed model with pre-retort thiamin content as a covariate and production day as a random effect. Main effects of vitamin premix and yeast and their interaction were significant at P-values less than 0.05. The Fisher’s LSD post hoc comparison test was used to separate means. On average, experimental formulas retained 33.75% thiamin. The main effect of vitamin premix (average -42.9 mg/kg DMB) was not significant (P > 0.05). Thiamin degradation between NY (-31.3 mg/kg DMB) and BY (-33.8 mg/kg DMB) was similar (P > 0.05) whereas EA (-40.5 mg/kg DMB) and LBV (-55.6 mg/kg DMB) lost more (P < 0.05) thiamin than NY. The experimental formula of EA with vitamin premix (-70.3 mg/kg DMB) lost more (P < 0.05) thiamin than no yeast, BY, or EA without vitamin premix (average -17.4 mg/kg DMB) and all others (average -57.3 mg/kg DMB) were intermediate (P > 0.05). In summary, thiamin from yeast ingredients didn’t exhibit better thermal stability than thiamin mononitrate. However, those ingredients with similar degradation levels or uniquely high thiamin levels may provide added value.
Hydrocolloids are commonly used in canned pet food. However, their functional effects have not been quantified in this food format. The objective was to determine the effects of select hydrocolloids on batter consistency, heat penetration, and texture of canned pet food. Treatments were added to the formula as 1% dextrose (D) and 0.5% guar gum with 0.5% of either dextrose (DG), kappa carrageenan (KCG), locust bean gum (LBG), or xanthan gum (XGG). Data were analyzed as a 1-way ANOVA with batch as a random effect and separated by Fisher’s LSD at p < 0.05. Batter consistency (distance traveled in 30 s) thickened with increasing levels of hydrocolloids (thinnest to thickest: 23.63 to 2.75 cm). The D treatment (12.08 min) accumulated greater lethality during the heating cycle compared to all others (average 9.09 min). The KCG treatment (27.00 N) was the firmest and D and DG (average 8.75 N) the softest with LBG and XGG (average 15.59 N) intermediate. Toughness was similar except D (67 N·mm) was less tough than DG (117 N·mm). The D treatment showed the greatest expressible moisture (49.91%), LBG and XGG the lowest (average 16.54%), and DG and KCG intermediate (average 25.26%). Hydrocolloids influenced heat penetration, likely due to differences in batter consistency, and affected finished product texture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.