Bacterial communication plays an important role in many populationbased phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixedmicrobial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine.R ather than acting autonomously, bacterial cells communicate with one another to coordinate their efforts and relay vital information. Interspecies and intraspecies bacterial communication has been implicated in many community-dependent behaviors including virulence (1), biofilm formation (2), and antibiotic tolerance (3). Communication may therefore allow control of heterogeneity, which is important in determining fitness of microbial populations (4). Recently, we reported that bacterial communication through indole signaling induces persister formation in Escherichia coli (3). Persistence is an antibiotic-tolerant phenotype in which a dormant subpopulation of cells (persisters) survives antibiotic treatment without having genetically encoded resistance factors (5, 6). In E. coli, we found that indole signaling induced oxidative stress response and phage shock response pathways, thereby increasing the persister frequency within the population. This work suggested that bacteria can use intraspecies signaling to modify the antibiotic tolerance of their population in response to environmental conditions. Indole signaling is used by bacteria in the distal intestine of humans and other mammals (7). In this environment, alkaline and low nutrient conditions induce expression of the indole-producing tryptophanase (tnaA) enzyme in commensal E. coli and related bacteria (8). Indole concentrations in the mammalian intestine (∼300 μM to 1 mM) (9, 10) can induce antibiotic tolerance in E. coli without adversely affecting growth (11). As the mammalian intestine contains a richly m...
Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.
A series of salicylanilides was synthesized based on a high-throughput screening hit against Mycobacterium tuberculosis. A free phenolic hydroxyl on the salicylic acid moeity is required for activity, and the structure-activity relationship of the aniline ring is largely driven by the presence of electron withdrawing groups. We synthesized 94 analogs exploring substitutions of both rings and the linker region in this series and we have identified multiple compounds with low micromolar potency. Unfortunately, cytotoxicity in a murine macrophage cell line trends with antimicrobial activity, suggesting a similar mechanism of action. We propose that salicylanilides function as proton shuttles that kill cells by destroying the cellular proton gradient, limiting their utility as potential therapeutics.
Bacteria have a remarkable ability to survive, persist, and ultimately adapt to environmental challenges. A ubiquitous environmental hazard is DNA damage, and most bacteria have evolved a network of genes to combat genotoxic stress. This network is known as the SOS response and aids in bacterial survival by regulating genes involved in DNA repair and damage tolerance. Recently, the SOS response has been shown to play an important role in bacterial pathogenesis, and yet the role of the SOS response in nonpathogenic organisms and in physiological settings remains underexplored. Using a commensal Escherichia coli strain, MP1, we showed that the SOS response plays a vital role during colonization of the murine gut. In an unperturbed environment, the SOS-off mutant is impaired for stable colonization relative to a wild-type strain, suggesting the presence of genotoxic stress in the mouse gut. We evaluated the possible origins of genotoxic stress in the mouse gut by examining factors associated with the host versus the competing commensal organisms. In a dextran sulfate sodium (DSS) colitis model, the SOS-off colonization defect persisted but was not exacerbated. In contrast, in a germ-free model, the SOS-off mutant colonized with efficiency equal to that seen with the wild-type strain, suggesting that competing commensal organisms might be a significant source of genotoxic stress. This report extends our understanding of the importance of a functional SOS response for bacterial fitness in the context of a complex physiological environment and highlights the SOS response as a possible mechanism that contributes to ongoing genomic changes, including potential antibiotic resistance, in the microbiome of healthy hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.