SUMMARY JC virus, the cause of progressive multifocal leukoencephalopathy (PML), and the BK virus are genetically similar and share sequence homology in immunogenic proteins. We treated three immunosuppressed patients with PML with ex vivo- expanded, partially HLA-matched, third-party–produced, cryopreserved BK virus–specific T cells. The immunosuppression in these patients was due to the conditioning regimen for cord-blood transplantation in one patient, a myeloproliferative neoplasm treated with ruxolitinib in another, and acquired immunodeficiency syndrome in the third. After T-cell infusion in two of the patients, alleviation of the clinical signs and imaging features of PML was seen and JC virus in the cerebrospinal fluid (CSF) cleared. The other patient had a reduction in JC viral load and stabilization of symptoms that persisted until her death 8 months after the first infusion. Two of the patients had immune reconstitution syndrome. Donor-derived T cells were detected in the CSF after infusion. (Funded by the M.D. Anderson Cancer Center Moon Shots Program and the National Institutes of Health; ClinicalTrials.gov number, NCT02479698.)
Unrelated donor cord blood (CB) transplantation (CBT) results in disease-free survival comparable to that of unrelated adult donor transplantation in patients with hematologic malignancies. Extension of allograft access to racial and ethnic minorities, rapid graft availability, flexibility of transplant date, and low risks of disabling chronic graft-versus-host disease (GVHD) and relapse are significant advantages of CBT, and multiple series have reported a low risk of late transplant-related mortality (TRM) post-transplant. Nonetheless, early post-transplant morbidity and TRM and the requirement for intensive early post-transplant management have slowed wide adoption of CBT. Targeted care strategies in CBT recipients can, however, mitigate early transplant complications and reduce transplant costs. Herein, we provide a practical “how to” guide to CBT for hematologic malignancies on behalf of the NMDP and the ASBMT CB Special Interest Group (SIG). It shares the best practices of 6 experienced United States transplant centers with a special interest in the use of CB as a hematopoietic stem cell source. We address donor search and unit selection, unit thaw and infusion, conditioning regimens, immune suppression, management of GVHD, opportunistic infections and other factors in supportive care appropriate for CBT. Meticulous attention to such details has improved CBT outcomes and will facilitate the success of CBT as a platform for future graft manipulations.
• Ex vivo fucosylation of cord blood cells improves their homing capacities, leading to faster neutrophil and platelet engraftments.• This method is quick, safe, and does not require a GMP laboratory; therefore, it can be used widely.Delayed engraftment is a major limitation of cord blood transplantation (CBT), due in part to a defect in the cord blood (CB) cells' ability to home to the bone marrow. Because this defect appears related to low levels of fucosylation of cell surface molecules that are responsible for binding to P-and E-selectins constitutively expressed by the marrow microvasculature, and thus for marrow homing, we conducted a first-in-humans clinical trial to correct this deficiency. Patients with high-risk hematologic malignancies received myeloablative therapy followed by transplantation with 2 CB units, one of which was treated ex vivo for 30 minutes with the enzyme fucosyltransferase-VI and guanosine diphosphate fucose to enhance the interaction of CD34 1 stem and early progenitor cells with microvessels. The results of enforced fucosylation for 22 patients enrolled in the trial were then compared with those for 31 historical controls who had undergone double unmanipulated CBT. The median time to neutrophil engraftment was 17 days (range, 12-34 days) compared with 26 days (range, 11-48 days) for controls (P 5 .0023). Platelet engraftment was also improved: median was 35 days (range, 18-100 days) compared with 45 days (range, 27-120 days) for controls (P 5 .0520). These findings support ex vivo fucosylation of multipotent CD341 CB cells as a clinically feasible means to improve engraftment efficiency in the double CBT setting. The trial is registered to www.clinicaltrials.gov as #NCT01471067. (Blood. 2015;
Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication.
This study reviews the past, present, and future of cord transplantation, including the potential use of single‐ and double‐unit cord blood transplantation in multiple hematological malignancies including leukemia and aggressive lymphomas in light of recent discoveries. Current excitement in the field revolves around the development of safer techniques to improve homing, engraftment, and immune reconstitution after cord blood transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.