The 2010 Development Test Environment Experiment (DTE10) took place from 28 January to 29 March 2010 in the Detroit, Michigan, metropolitan area for the purposes of collecting and evaluating mobile data from vehicles. To examine the quality of these data, over 239 000 air temperature and atmospheric pressure observations were obtained from nine vehicles and were compared with a weather station set up at the testing site. The observations from the vehicles were first run through the NCAR Vehicle Data Translator (VDT). As part of the VDT, quality-checking (QCh) tests were applied; pass rates from these tests were examined and were stratified by meteorological and nonmeteorological factors. Statistics were then calculated for air temperature and atmospheric pressure in comparison with the weather station, and the effects of different meteorological and nonmeteorological factors on the statistics were examined. Overall, temperature measurements showed consistent agreement with the weather station, and there was little impact from the QCh process or stratifications-a result that demonstrated the feasibility of collecting mobile temperature observations from vehicles. Atmospheric pressure observations were less well matched with surface validation, the degree of which varied with the make and model of vehicle. Therefore, more work must be done to improve the quality of these observations if atmospheric pressure from vehicles is to be useful.
A forecaster-interactive capability was added to an automated convective storm nowcasting system [Auto-Nowcaster (ANC)] to allow forecasters to enhance the performance of 1-h nowcasts of convective storm initiation and evolution produced every 6 min. This Forecaster-Over-The-Loop (FOTL-ANC) system was tested at the National Weather Service Fort Worth-Dallas, Texas, Weather Forecast Office during daily operations from 2005 to 2010. The forecaster's role was to enter the locations of surface convergence boundaries into the ANC prior to dissemination of nowcasts to the Center Weather Service Unit. Verification of the FOTL-ANC versus ANC (no human) nowcasts was conducted on the convective scale. Categorical verification scores were computed for 30 subdomains within the forecast domain. Special focus was placed on subdomains that included convergence boundaries for evaluation of forecaster involvement and impact on the FOTL-ANC nowcasts. The probability of detection of convective storms increased by 20%-60% with little to no change observed in the false-alarm ratios. Bias values increased from 0.8-1.0 to 1.0-3.0 with human involvement. The accuracy of storm nowcasts notably improved with forecaster involvement; critical success index (CSI) values increased from 0.15-0.25 (ANC) to 0.2-0.4 (FOTL-ANC). Over short time periods, CSI values as large as 0.6 were also observed. This study demonstrated definitively that forecaster involvement led to positive improvement in the nowcasts in most cases while causing no degradation in other cases; a few exceptions are noted. Results show that forecasters can play an important role in the production of rapidly updated, convective storm nowcasts for end users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.