Mutations in DJ-1 have been linked to an autosomal recessive form of early-onset parkinsonism. To identify mutations causing Parkinson's disease (PD), we sequenced exons 1 through 7 of DJ-1 in 107 early-onset (age at diagnosis up to 50 years) PD subjects. One subject had a frameshift mutation in the first coding exon and an exon 7 splice mutation both predicted to result in a loss of functional protein. This subject was diagnosed with probable PD at age 24 years with asymmetric onset and an excellent response to levodopa therapy. Our observations suggest that sequence alterations in DJ-1 are a rare cause of early-onset PD.
De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.
Parkinson's disease patients frequently have symptoms and signs of autonomic nervous dysfunction that are the source of considerable disability. Recent studies have revealed that most patients with Parkinson's disease, and all with Parkinson's disease-associated orthostatic hypotension, have a loss of cardiac sympathetic innervation. Familial Parkinson's disease, caused by mutation of the gene encoding alpha-synuclein, also features orthostatic hypotension, sympathetic neurocirculatory failure and cardiac sympathetic denervation. We have recently described a whole-gene triplication of alpha-synuclein causing Lewy body parkinsonism in a large, well characterized family called the 'Iowa kindred'. Here we report the results of cardiac PET scanning using the sympathoneural imaging agent, 6-[18F]fluorodopamine in affected and unaffected members of this kindred. Four family members were studied, two with parkinsonism, one clinically normal and one with benign essential tremor alone. Both affected members had obvious loss of cardiac sympathetic innervation; the unaffected member had normal innervation, as did the member with isolated essential tremor. The results indicate that, in this family, where disease is caused by overexpression of normal alpha-synuclein, cardiac sympathetic denervation cosegregates with parkinsonism. Post-mortem studies have demonstrated synuclein-positive Lewy body formation in the brains of individuals with parkinsonism who were also in the family described here and who also carry this triplication. These results indicate that both parkinsonism and cardiac sympathetic denervation can result from an excess of normal synuclein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.