Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.
The von Mises and Fisher distributions are spherical analogues to the Normal distribution on the unit circle and unit sphere, respectively. The computation of their moments, and in particular the second moment, usually involves solving tedious trigonometric integrals. Here we present a new method to compute the moments of spherical distributions, based on the divergence theorem. This method allows a clear derivation of the second moments and can be easily generalized to higher dimensions. In particular we note that, to our knowledge, the variance-covariance matrix of the three dimensional Fisher distribution has not previously been explicitly computed. While the emphasis of this paper lies in calculating the moments of spherical distributions, their usefulness is motivated by their relationship to population statistics in animal/cell movement models and demonstrated in applications to the modelling of sea turtle navigation, wolf movement and brain tumour growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.