Mutations in Optineurin (Optn) gene have been implicated in both familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous system (CNS) and how it may contribute to ALS pathology is unclear. Here, we found that optineurin actively suppressed RIPK1-dependent signaling by regulating its turnover. Loss-of-OPTN led to progressive dysmyelination and axonal degeneration through engagement of necroptotic machinery, including RIPK1, RIPK3 and MLKL, in the CNS. Furthermore, RIPK1/RIPK3-mediated axonal pathology was commonly observed in SOD1G93A transgenic mice and pathological samples from human ALS. Thus, RIPK1/RIPK3 plays a critical role in mediating progressive axonal degeneration and inhibiting RIPK1 kinase may provide an axonal protective strategy for the treatment of ALS and other human degenerative diseases characterized by axonal degeneration.
Stimulation of TNFR1 by TNFα can promote three distinct alternative mechanisms of cell death: necroptosis, RIPK1-independent and -dependent apoptosis. How cells decide which way to die is unclear. Here, we report that TNFα-induced phosphorylation of RIPK1 in the intermediate domain by TAK1 plays a key role in regulating this critical decision. Using phospho-Ser321 as a marker, we show that the transient phosphorylation of RIPK1 intermediate domain induced by TNFα leads to RIPK1-independent apoptosis when NF-κB activation is inhibited by cycloheximide. On the other hand, blocking Ser321 phosphorylation promotes RIPK1 activation and its interaction with FADD to mediate RIPK1-dependent apoptosis (RDA). Finally, sustained phosphorylation of RIPK1 intermediate domain at multiple sites by TAK1 promotes its interaction with RIPK3 and necroptosis. Thus, absent, transient and sustained levels of TAK1-mediated RIPK1 phosphorylation may represent distinct states in TNF-RSC to dictate the activation of three alternative cell death mechanisms, RDA, RIPK1-independent apoptosis and necroptosis.
Molecular signatures are emerging determinants of choice of therapy for lung adenocarcinomas. An evolving therapeutic approach includes targeting metabolic dependencies in cancers. Here, using an integrative approach, we have dissected the metabolic fingerprints of lung adenocarcinomas, and we show that Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine biosynthesis, is highly expressed in a adenocarcinoma subset with poor prognosis. This subset harbors a gene signature for DNA replication and proliferation. Accordingly, models with high levels of PHGDH display rapid proliferation, migration, and selective channeling of serine-derived carbons to glutathione and pyrimidines, while depletion of PHGDH shows potent and selective toxicity to this subset. Differential PHGDH protein levels were defined by its degradation, and the deubiquitinating enzyme JOSD2 is a regulator of its protein stability. Our study provides evidence that a unique metabolic program is activated in a lung adenocarcinoma subset, described by PHGDH, which confers growth and survival and may have therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.