Abstract-Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4-and 70-kDa dextrans through the cytosol, and localization of 155-and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin-and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4-to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size. Key Words: ultrasound microbubble targeted delivery Ⅲ cell membrane pore Ⅲ endocytosis Ⅲ dextran Ⅲ endothelial cells C onventional delivery methods for drugs or genes, such as systemic administration via intravenous injection or oral administration, often do not suffice for therapeutic compounds such as peptides, silencing RNAs and genes. 1 A recent development in delivery systems for therapeutic compounds is the microbubble-ultrasound (US) interaction. 2,3 Before its use as a clinical modality, it is of utmost importance to obtain new physiological insights into the mechanisms of uptake by US and microbubble-exposed cells.Microbubbles were originally developed as US contrast agents and are administered intravenously to the systemic circulation to enhance scattering of blood in echocardiography. They consist of a gas core stabilized with an encapsulation, ranging from 1 to 10 m in diameter. 4 Nowadays, research focuses on the use of US and microbubbles for therapeutic applications. It has been demonstrated that USexposed microbubbles can achieve safe and efficient local delivery of a variety of drugs 5,6 and genes.
Objective— Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced signaling pathways, but its role has not been clarified. Methods and Results— VEGF induced the activation of RhoA and recruited RhoA to the cell membrane of human ECs. This increase in RhoA activity is necessary for the VEGF-induced reorganization of the F-actin cytoskeleton, as demonstrated by adenoviral transfection of dominant-negative RhoA. Rho kinase mediated this effect of RhoA, as was demonstrated by the use of Y-27632, a specific inhibitor of Rho kinase. Inhibition of Rho kinase prevented the VEGF-enhanced EC migration in response to mechanical wounding but had no effect on basal EC migration. Furthermore, in an in vitro model for angiogenesis, inhibition of either RhoA or Rho kinase attenuated the VEGF-mediated ingrowth of ECs in a 3-dimensional fibrin matrix. Conclusions— VEGF-induced cytoskeletal changes in ECs require RhoA and Rho kinase, and activation of RhoA/Rho kinase signaling is involved in the VEGF-induced in vitro EC migration and angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.