Abstract-Jerne's idiotypic-network theory postulates that the immune response involves interantibody stimulation and suppression, as well as matching to antigens. The theory has proved the most popular artificial immune system (AIS) model for incorporation into behavior-based robotics, but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with nonidiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic AIS network with a reinforcement-learning (RL)-based control system is described, and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels, and a full hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.Index Terms-Artificial immune system (AIS), behavior arbitration mechanism, idiotypic-network theory, reinforcement learning (RL).
This paper considers the problem of maximizing the number of task allocations in a distributed multirobot system under strict time constraints, where other optimization objectives need also be considered. It builds upon existing distributed task allocation algorithms, extending them with a novel method for maximizing the number of task assignments. The fundamental idea is that a task assignment to a robot has a high cost if its reassignment to another robot creates a feasible time slot for unallocated tasks. Multiple reassignments among networked robots may be required to create a feasible time slot and an upper limit to this number of reassignments can be adjusted according to performance requirements. A simulated rescue scenario with task deadlines and fuel limits is used to demonstrate the performance of the proposed method compared with existing methods, the consensus-based bundle algorithm and the performance impact (PI) algorithm. Starting from existing (PI-generated) solutions, results show up to a 20% increase in task allocations using the proposed method.
This paper addresses two main problems with many heuristic task allocation approaches-solution trapping in local minima and static structure. The existing distributed task allocation algorithm known as performance impact (PI) is used as the vehicle for developing solutions to these problems as it has been shown to outperform the state-of-the-art consensusbased bundle algorithm for time-critical problems with tight deadlines, but is both static and suboptimal with a tendency toward trapping in local minima. This paper describes two additional modules that are easily integrated with PI. The first extends the algorithm to permit dynamic online rescheduling in real time, and the second boosts performance by introducing an additional soft-max action-selection procedure that increases the algorithm's exploratory properties. This paper demonstrates the effectiveness of the dynamic rescheduling module and shows that the average time taken to perform tasks can be reduced by up to 9% when the soft-max module is used. In addition, the solution of some problems that baseline PI cannot handle is enabled by the second module. These developments represent a significant advance in the state of the art for multiagent, time-critical task assignment. Note to Practitioners-This work was motivated by the limitations of current agent-to-task allocation algorithms that do not use a central server for communication. In previously published work, the current state-of-the-art consensus-based bundle algorithm has demonstrated poor performance when applied to model task allocation problems with critical time limits, often failing to assign all of the tasks, especially when the deadlines are tight. The performance impact (PI) algorithm has a much better success rate with these model problems but would be flawed when applied to real missions because it has no mechanism for online replanning when new information becomes available. In addition, it is somewhat restricted in the way it searches for a problem solution, meaning that more efficient plans are often available but are not discovered. This paper tackles both of these shortcomings. The PI algorithm is extended to include a module that permits rescheduling when necessary, and a further module is introduced that widens the scope of the solution search. A third module that is able to offer robust plans, even for large-scaled missions involving many agents and tasks, has also been developed, although it is not discussed here. Implementation
The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.