ChaC1 is a mammalian proapoptic protein of unknown function induced during endoplasmic reticulum stress. We show using in vivo studies and novel in vitro assays that the ChaC family of proteins function as c-glutamyl cyclotransferases acting specifically to degrade glutathione but not other c-glutamyl peptides. The overexpression of these proteins (but not the catalytically dead E4Q mutants) led to glutathione depletion and enhanced apoptosis in yeast. The ChaC family is conversed across all phyla and represents a new pathway for glutathione degradation in living cells, and the first cytosolic pathway for glutathione degradation in mammalian cells.
Glutathione homoeostasis is critical to plant life and its adaptation to stress. The γ-glutamyl cycle of glutathione biosynthesis and degradation plays a pre-eminent role in glutathione homoeostasis. The genes encoding two enzymatic steps of glutathione degradation, the γ-glutamyl cyclotransferase (GGCT; acting on γ-glutamyl amino acids) and the Cys-Gly dipeptidase, have, however, lacked identification. We have investigated the family of GGCTs in Arabidopsis thaliana. We show through in vivo functional assays in yeast that all three members of the ChaC/GCG subfamily show significant activity towards glutathione but no detectable activity towards γ-glutamyl methionine. Biochemical characterization of the purified recombinant enzymes GGCT2;2 and GGCT2;3 further confirmed that they act specifically to degrade glutathione to yield 5-oxoproline and Cys-Gly peptide and show no significant activity towards γ-glutamyl cysteine. The Km for glutathione was 1.7 and 4.96 mM for GGCT2;2 and GGCT2;3 respectively and was physiologically relevant. Evaluation of representative members of other subfamilies indicates the absence of GGCTs from plants showing significant activity towards γ-glutamyl-amino acids as envisaged in the classical γ-glutamyl cycle. To identify the Cys-Gly peptidase, we evaluated leucine aminopeptidases (LAPs) as candidate enzymes. The cytosolic AtLAP1 (A. thaliana leucine aminopeptidase 1) and the putative chloroplastic AtLAP3 displayed activity towards Cys-Gly peptide through in vivo functional assays in yeast. Biochemical characterization of the in vitro purified hexameric AtLAP1 enzyme revealed a Km for Cys-Gly of 1.3 mM that was physiologically relevant and indicated that AtLAP1 represents a cytosolic Cys-Gly peptidase activity of A. thaliana. The studies provide new insights into the functioning of the γ-glutamyl cycle in plants.
Edited by Ruma BanerjeeGlutathione degradation plays an important role in glutathione and redox homeostasis, and thus it is imperative to understand the enzymes and the mechanisms involved in glutathione degradation in detail. We describe here ChaC2, a member of the ChaC family of ␥-glutamylcyclotransferases, as an enzyme that degrades glutathione in the cytosol of mammalian cells. ChaC2 is distinct from the previously described ChaC1, to which ChaC2 shows ϳ50% sequence identity. and ChaC2 proteins also shared the same specificity for reduced glutathione, with no activity against either ␥-glutamyl amino acids or oxidized glutathione. The ChaC2 proteins were found to be expressed constitutively in cells, unlike the tightly regulated ChaC1. Moreover, lower eukaryotes have a single member of the ChaC family that appears to be orthologous to ChaC2. In addition, we determined the crystal structure of yeast ChaC2 homologue, GCG1, at 1.34 Å resolution, which represents the first structure of the ChaC family of proteins. The catalytic site is defined by a fortuitous benzoic acid molecule bound to the crystal structure. The mechanism for binding and catalytic activity of this new enzyme of glutathione degradation, which is involved in continuous but basal turnover of cytosolic glutathione, is proposed.
Glutathione degradation plays a far greater role in cellular physiology than previously envisaged. The differential regulation and differential specificities of various enzymes, each acting on distinct pools, can lead to different consequences to the cell. It is likely that the coming years will see these downstream effects being unraveled in greater detail and will lead to a better understanding and appreciation of glutathione degradation. Antioxid. Redox Signal. 27, 1200-1216.
Although bone marrow aplasia has been considered for the past decades as the major contributor of radiation-induced blood disorders, cytopenias alone are insufficient to explain differences in the prevalence of bleeding. In this study, the minipig was used as a novel preclinical model of hematopoietic acute radiation syndrome to assess if factors other than platelet counts correlated with bleeding and survival. We sought to determine whether radiation affected the insulin-like growth factor-1 (IGF-1) pathway, a growth hormone with cardiovascular and radioprotective features. Gottingen and Sinclair minipigs were exposed to ionizing radiation at hematopoietic doses. The smaller Gottingen minipig strain was more sensitive to radiation; differences in IGF-1 levels were minimal, suggesting that increased sensitivity could depend on weak response to the hormone. Radiation caused IGF-1 selective resistance by inhibiting the anti-inflammatory anti-oxidative stress IRS/PI3K/Akt but not the pro-inflammatory MAPK kinase pathway, shifting IGF-1 signaling towards a pro-oxidant, pro-inflammatory environment. Selective IGF-1 resistance associated with hemorrhages in the heart, poor prognosis, increase in C-reactive protein and NADPH oxidase 2, uncoupling of endothelial nitric oxide synthase, inhibition of nitric oxide (NO) synthesis and imbalance between the vasodilator NO and the vasoconstrictor endothelin-1 molecules. Selective IGF-1 resistance is a novel mechanism of radiation injury, associated with a vicious cycle amplifying reactive oxygen species-induced damage, inflammation and endothelial dysfunction. In the presence of thrombocytopenia, selective inhibition of IGF-1 cardioprotective function may contribute to the development of hemostatic disorders. This finding may be particularly relevant for individuals with low IGF-1 activity, such as the elderly or those with cardiometabolic dysfunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.