Di (2-ethylhexyl) phthalate (DEHP) is recognized in vertebrates as an Endocrine Disrupting Chemical (EDC). DEHP can alter steroid hormones production, development, reproduction and behavior in vertebrates. Only few studies investigated DEHP effects on insects. However, some recent studies on aquatic insects showed that DEHP could also act as an EDC by interfering with the signaling pathways of ecdysteroids, the main hormones involved in the control of insect postembryonic development and physiology. The aim of the study was to investigate (1) the fate of DEHP within a terrestrial insect species by exposing larvae to food containing a wide range of DEHP concentrations and (2) the effects of this chemical on their post-embryonic development and metamorphosis, by using a multi-level approach. DEHP was shown to be present both in larvae and resulting stages, with higher concentrations in chrysalises and adults than in larvae. DEHP concentrations also decreased at the end of the last larval instar, suggesting the metabolic transformation or excretion of this chemical during this time. Only the two highest DEHP doses induced higher insect mortality, whereas low and intermediate concentrations increased larval food consumption without affecting body weight. Metabolic profiles showed that in control insects, the last three days before metamorphosis correspond to a metabolic transition, but with time-dependent changes in treated insects. Interestingly, DEHP treatments also alter both hemolymphatic ecdysteroid titers and expression levels of ecdysteroid response genes. These results confirm that DEHP can alter insect post-embryonic development and metamorphosis, by interfering with ecdysteroid pathways.
Bis(2-ethylhexyl) phthalate (DEHP) is a widely produced plasticizer that is considered to act as an endocrine-disrupting chemical in vertebrates and invertebrates. Indeed, many studies have shown that DEHP alters hormonal levels, reproduction and behavior in vertebrates. Few studies have focused on the effects of DEHP on insects, although DEHP is found almost everywhere in their natural habitats, particularly in soils and plants. Here, we investigated the effects of DEHP on the sexual behavior and physiology of a pest insect, the noctuid moth Spodoptera littoralis. In this nocturnal species, olfaction is crucial for sexual behavior, and ecdysteroids at the antennal level have been shown to modulate sex pheromone detection by males. In the present study, larvae were fed food containing different DEHP concentrations, and DEHP concentrations were then measured in the adults (males and females). Hemolymphatic ecdysteroid concentrations, the antennal expression of genes involved in the ecdysteroid pathway (nuclear receptors EcR, USP, E75, and E78 and calmodulin) and sexual behavior were then investigated in adult males. The success and latency of mating as well as the hatching success were also studied in pairs consisting of one DEHP male and one uncontaminated female or one DEHP female and one uncontaminated male. We also studied the offspring produced from pairs involving contaminated females to test the transgenerational effect of DEHP. Our results showed the general downregulation of nuclear receptors and calmodulin gene expression associated with the higher concentrations of DEHP, suggesting peripheral olfactory disruption. We found some effects on male behavior but without an alteration of the mating rate.Effects on offspring mortality and developmental rates in the N+1 generation were also found at the higher doses of DEHP. Taken together, the results of the study show for the first time that larval exposure to DEHP can induce delayed endocrine-disruptive effects in the adults of a terrestrial insect as well as effects on the next generation. To date, our study is also the first description of an impact of endocrine disrupter on olfaction in insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.