Objectives: The present multicenter Phase II study evaluated the rate of late grade ≥2 gastrointestinal (GI) toxicities at 3 years, after hypofractionated radiotherapy (HFR) of prostate cancer with injection of hyaluronic acid (HA) between the prostate and the rectum. Methods: Between 2010 and 2013, 36 patients with low- or intermediate-risk prostate cancer were treated by HFR/IMRT-IGRT. 20 fractions of 3.1 Gy were delivered, 5 days per week for a total dose of 62 Gy. A transperineal injection of 10cc of HA was performed between the rectum and the prostate. Late toxicities were evaluated between 3 and 36 months after the end of treatment (CTCAE v4). Results: Median pretreatment prostate-specific antigen was 8 ng ml−1. Among the 36 included patients, 2 were not evaluated because they withdrew the study in the first 3 months of follow-up, and 4 withdrew between 3 and 36 months, the per protocol population was therefore composed. Late grade ≥2 GI toxicities occurred in 4 (12%) patients with 3 (9%) Grade 2 rectal bleedings and one diarrhoea. Therefore, the inefficacy hypothesis following Fleming one-stage design cannot be rejected. None of the patients experienced late Grade 3–4 toxicities. Among the 30 patients completing the 36 months’ visit, none still had a grade ≥2 GI toxicity. Late grade ≥2 genitourinary (GU) toxicities occurred in 14 (41%) patients. The most frequent toxicities were dysuria and pollakiuria. Four patients still experienced a grade ≥2 GU toxicity at 36 months. The biochemical relapse rate (nadir +2 ng ml−1) was 6% (2 patients). Overall, HA was very well tolerated with no pain or discomfort. Conclusion: Despite the inefficacy of HA injection was not rejected, we observed the absence of Grade 3 or 4 rectal toxicity as well as a rate of Grade 2 rectal bleeding below 10% at 36 months of follow-up. Late urinary toxicities are the most frequent but the rate decreases largely at 3 years. Advances in knowledge: With an injection of HA, hypofractionated irradiation in 4 weeks is well tolerated with no Grade 3 or 4 GI toxicity and a rate of Grade 2 rectal bleeding below 10% at 36 months of follow-up.
Objective: The most commonly used dose for prostate cancer stereotactic body radiotherapy (SBRT) is 5 × 7.25 Gy. The aim of this study was to evaluate the dosimetric feasibility of a 5 × 9 Gy SBRT regimen while still limiting the dose to the urethra to 5 × 7.25 Gy. This dosimetric study is part of the groundwork for a future Phase III randomized trial. Methods: The prostate, the urethra and the tumors were delineated on 20 dosimetric CT-scans with MRI-registration. The planning target volume (PTVp) was defined as a 5 mm expansion (3 mm posteriorly) of the prostate. The planning at risk volume (PRVu) was defined as a 2 mm expansion of the urethra. The tumors were delineated on the MRI (GTVt) and a 3 mm-margin was added to create a tumoral planning target volume (PTVt). IMRT plans were optimized to deliver 5 × 9 Gy to the PTVp, limiting the dose to the PRVu to 5 × 7.25 Gy. Results are presented using average (range) values. Results: PTVp doses were D98% = 36.2 Gy (35.6–36.8), D2% = 46.9 Gy (46.5–47.5) and mean dose = 44.1 Gy (43.8–44.5). The dose to the PRVu was within tolerance limits for all 20 patients: V34.4Gy = 99.8% (99.2–100) and D5% = 38.7 Gy (38.6–38.8). Dose coverage of PTV-PRVu was D95% = 40.6 Gy (40.5–40.9), D5% = 46.6 Gy (46.2–47.2) and mean dose = 44.6 Gy (44.3–44.9). Dose to the PTVt reached 44.6 Gy (41.2–45.9). Doses to the OAR were respected, except V36Gy ≤1 cc for the rectum. Conclusion: A SBRT dose-escalation to 5 × 9 Gy on the prostate while sparing the urethra + 2 mm at 36.25 Gy is feasible without compromising dose coverage to the tumor. This radiation regimen will be used for a Phase-III trial. Advances in knowledge: In prostate SBRT, dose optimization on the urethra is feasible and could decrease urinary toxicities.
Intensity modulation treatments are widely used in radiotherapy because of many known advantages. In this context, the picket fence test (PF) is a relevant test to check the Multileaf Collimator (MLC) performances. So this work compares and evaluates three analysis platforms for the PF used routinely by three different institutions. This study covers two linear accelerators (Linac) with two MLC types, a Millenium 120 MLC and Millenium 120 High Definition MLC respectively on a Varian Truebeam and Truebeam STx. Both linacs include an As 1200 portal imager (EPID). From a reference PF plan, MLC errors have been introduced to modify the slits in position or width (shifts from 0.1 to 0.5 mm on one or both banks). Then errors have been defined on the EPID to investigate detection system deviations (signal sensitivity and position variations). Finally, 110 DICOM‐RT images have been generated and analyzed by each software system. All software systems have shown good performances to quantify the position errors, even though the leaf pair identifications can be wrong in some cases regarding the analysis method considered. The slit width measurement (not calculated by all software systems) has shown good sensitivity, but some quantification difficulties have been highlighted regardless of the analysis method used. Linked to the expected accuracy of the PF test, the imager variations have demonstrated considerable influence in the results. Differences in the results and the analysis methods have been pointed out for each software system. The results can be helpful to optimize the settings of each analysis software system depending on expectations and treatment modalities of each institution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.